import torch
import scipy.cluster
if torch.cuda.is_available():
import torch_cluster.nearest_cuda
[docs]def nearest(x, y, batch_x=None, batch_y=None):
r"""Clusters points in :obj:`x` together which are nearest to a given query
point in :obj:`y`.
Args:
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
y (Tensor): Node feature matrix
:math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
node to a specific example. (default: :obj:`None`)
.. testsetup::
import torch
from torch_cluster import nearest
.. testcode::
>>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
>>> batch_x = torch.tensor([0, 0, 0, 0])
>>> y = torch.Tensor([[-1, 0], [1, 0]])
>>> batch_y = torch.tensor([0, 0])
>>> cluster = nearest(x, y, batch_x, batch_y)
"""
if batch_x is None:
batch_x = x.new_zeros(x.size(0), dtype=torch.long)
if batch_y is None:
batch_y = y.new_zeros(y.size(0), dtype=torch.long)
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
assert x.dim() == 2 and batch_x.dim() == 1
assert y.dim() == 2 and batch_y.dim() == 1
assert x.size(1) == y.size(1)
assert x.size(0) == batch_x.size(0)
assert y.size(0) == batch_y.size(0)
if x.is_cuda:
return torch_cluster.nearest_cuda.nearest(x, y, batch_x, batch_y)
# Rescale x and y.
min_xy = min(x.min().item(), y.min().item())
x, y = x - min_xy, y - min_xy
max_xy = max(x.max().item(), y.max().item())
x, y, = x / max_xy, y / max_xy
# Concat batch/features to ensure no cross-links between examples exist.
x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], dim=-1)
y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], dim=-1)
return torch.from_numpy(
scipy.cluster.vq.vq(x.detach().cpu(),
y.detach().cpu())[0]).to(torch.long)