Source code for torch_geometric.nn.conv.transformer_conv

import math
from typing import Union, Tuple, Optional
from torch_geometric.typing import PairTensor, Adj, OptTensor

from torch import Tensor
import torch.nn.functional as F
from torch.nn import Linear
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import softmax


[docs]class TransformerConv(MessagePassing): r"""The graph transformer operator from the `"Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification" <https://arxiv.org/abs/2009.03509>`_ paper .. math:: \mathbf{x}^{\prime}_i = \mathbf{W}_1 \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{W}_2 \mathbf{x}_{j}, where the attention coefficients :math:`\alpha_{i,j}` are computed via multi-head dot product attention: .. math:: \alpha_{i,j} = \textrm{softmax} \left( \frac{(\mathbf{W}_3\mathbf{x}_i)^{\top} (\mathbf{W}_4\mathbf{x}_j)} {\sqrt{d}} \right) Args: in_channels (int or tuple): Size of each input sample. A tuple corresponds to the sizes of source and target dimensionalities. out_channels (int): Size of each output sample. heads (int, optional): Number of multi-head-attentions. (default: :obj:`1`) concat (bool, optional): If set to :obj:`False`, the multi-head attentions are averaged instead of concatenated. (default: :obj:`True`) beta (float, optional): If set, will combine aggregation and skip information via :math:`\beta\,\mathbf{W}_1 \vec{x}_i + (1 - \beta) \left(\sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{W}_2 \vec{x}_j \right)`. (default: :obj:`None`) dropout (float, optional): Dropout probability of the normalized attention coefficients which exposes each node to a stochastically sampled neighborhood during training. (default: :obj:`0`) edge_dim (int, optional): Edge feature dimensionality (in case there are any). (default :obj:`None`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. """ _alpha: OptTensor def __init__(self, in_channels: Union[int, Tuple[int, int]], out_channels: int, heads: int = 1, concat: bool = True, beta: Optional[float] = None, dropout: float = 0., edge_dim: Optional[int] = None, bias: bool = True, **kwargs): kwargs.setdefault('aggr', 'add') super(TransformerConv, self).__init__(node_dim=0, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.heads = heads self.concat = concat self.beta = beta self.dropout = dropout self.edge_dim = edge_dim if isinstance(in_channels, int): in_channels = (in_channels, in_channels) self.lin_key = Linear(in_channels[0], heads * out_channels) self.lin_query = Linear(in_channels[1], heads * out_channels) self.lin_value = Linear(in_channels[0], heads * out_channels) if edge_dim is not None: self.lin_edge = Linear(edge_dim, heads * out_channels, bias=False) else: self.lin_edge = Linear(1, 1) if concat: self.lin_skip = Linear(in_channels[1], heads * out_channels, bias=bias) else: self.lin_skip = Linear(in_channels[1], out_channels, bias=bias) self.reset_parameters()
[docs] def reset_parameters(self): self.lin_key.reset_parameters() self.lin_query.reset_parameters() self.lin_value.reset_parameters() if self.edge_dim: self.lin_edge.reset_parameters() self.lin_skip.reset_parameters()
[docs] def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj, edge_attr: OptTensor = None): if isinstance(x, Tensor): x: PairTensor = (x, x) # propagate_type: (x: PairTensor, edge_attr: OptTensor) out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=None) if self.concat: out = out.view(-1, self.heads * self.out_channels) else: out = out.mean(dim=1) x = self.lin_skip(x[1]) if self.beta is not None: out = self.beta * x + (1 - self.beta) * out else: out += x return out
def message(self, x_i: Tensor, x_j: Tensor, edge_attr: Optional[Tensor], index: Tensor, ptr: OptTensor, size_i: Optional[int]) -> Tensor: query = self.lin_key(x_j).view(-1, self.heads, self.out_channels) key = self.lin_query(x_i).view(-1, self.heads, self.out_channels) lin_edge = self.lin_edge if edge_attr is not None: edge_attr = lin_edge(edge_attr).view(-1, self.heads, self.out_channels) key += edge_attr alpha = (query * key).sum(dim=-1) / math.sqrt(self.out_channels) alpha = softmax(alpha, index, ptr, size_i) alpha = F.dropout(alpha, p=self.dropout, training=self.training) out = self.lin_value(x_j).view(-1, self.heads, self.out_channels) if edge_attr is not None: out += edge_attr out *= alpha.view(-1, self.heads, 1) return out def __repr__(self): return '{}({}, {}, heads={})'.format(self.__class__.__name__, self.in_channels, self.out_channels, self.heads)