Source code for torch_geometric.nn.conv.hypergraph_conv

from typing import Optional

import torch
from torch import Tensor
from torch.nn import Parameter
import torch.nn.functional as F
from torch_scatter import scatter_add
from torch_geometric.utils import softmax
from torch_geometric.nn.inits import glorot, zeros
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.nn.conv import MessagePassing


[docs]class HypergraphConv(MessagePassing): r"""The hypergraph convolutional operator from the `"Hypergraph Convolution and Hypergraph Attention" <https://arxiv.org/abs/1901.08150>`_ paper .. math:: \mathbf{X}^{\prime} = \mathbf{D}^{-1} \mathbf{H} \mathbf{W} \mathbf{B}^{-1} \mathbf{H}^{\top} \mathbf{X} \mathbf{\Theta} where :math:`\mathbf{H} \in {\{ 0, 1 \}}^{N \times M}` is the incidence matrix, :math:`\mathbf{W} \in \mathbb{R}^M` is the diagonal hyperedge weight matrix, and :math:`\mathbf{D}` and :math:`\mathbf{B}` are the corresponding degree matrices. For example, in the hypergraph scenario :math:`\mathcal{G} = (\mathcal{V}, \mathcal{E})` with :math:`\mathcal{V} = \{ 0, 1, 2, 3 \}` and :math:`\mathcal{E} = \{ \{ 0, 1, 2 \}, \{ 1, 2, 3 \} \}`, the :obj:`hyperedge_index` is represented as: .. code-block:: python hyperedge_index = torch.tensor([ [0, 1, 2, 1, 2, 3], [0, 0, 0, 1, 1, 1], ]) Args: in_channels (int): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. out_channels (int): Size of each output sample. use_attention (bool, optional): If set to :obj:`True`, attention will be added to this layer. (default: :obj:`False`) heads (int, optional): Number of multi-head-attentions. (default: :obj:`1`) concat (bool, optional): If set to :obj:`False`, the multi-head attentions are averaged instead of concatenated. (default: :obj:`True`) negative_slope (float, optional): LeakyReLU angle of the negative slope. (default: :obj:`0.2`) dropout (float, optional): Dropout probability of the normalized attention coefficients which exposes each node to a stochastically sampled neighborhood during training. (default: :obj:`0`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. """ def __init__(self, in_channels, out_channels, use_attention=False, heads=1, concat=True, negative_slope=0.2, dropout=0, bias=True, **kwargs): kwargs.setdefault('aggr', 'add') super(HypergraphConv, self).__init__(node_dim=0, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.use_attention = use_attention if self.use_attention: self.heads = heads self.concat = concat self.negative_slope = negative_slope self.dropout = dropout self.lin = Linear(in_channels, heads * out_channels, bias=False, weight_initializer='glorot') self.att = Parameter(torch.Tensor(1, heads, 2 * out_channels)) else: self.heads = 1 self.concat = True self.lin = Linear(in_channels, out_channels, bias=False, weight_initializer='glorot') if bias and concat: self.bias = Parameter(torch.Tensor(heads * out_channels)) elif bias and not concat: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters()
[docs] def reset_parameters(self): self.lin.reset_parameters() if self.use_attention: glorot(self.att) zeros(self.bias)
[docs] def forward(self, x: Tensor, hyperedge_index: Tensor, hyperedge_weight: Optional[Tensor] = None, hyperedge_attr: Optional[Tensor] = None) -> Tensor: r""" Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. hyperedge_index (LongTensor): The hyperedge indices, *i.e.* the sparse incidence matrix :math:`\mathbf{H} \in {\{ 0, 1 \}}^{N \times M}` mapping from nodes to edges. hyperedge_weight (Tensor, optional): Hyperedge weights :math:`\mathbf{W} \in \mathbb{R}^M`. (default: :obj:`None`) hyperedge_attr (Tensor, optional): Hyperedge feature matrix in :math:`\mathbb{R}^{M \times F}`. These features only need to get passed in case :obj:`use_attention=True`. (default: :obj:`None`) """ num_nodes, num_edges = x.size(0), 0 if hyperedge_index.numel() > 0: num_edges = int(hyperedge_index[1].max()) + 1 if hyperedge_weight is None: hyperedge_weight = x.new_ones(num_edges) x = self.lin(x) alpha = None if self.use_attention: assert hyperedge_attr is not None x = x.view(-1, self.heads, self.out_channels) hyperedge_attr = self.lin(hyperedge_attr) hyperedge_attr = hyperedge_attr.view(-1, self.heads, self.out_channels) x_i = x[hyperedge_index[0]] x_j = hyperedge_attr[hyperedge_index[1]] alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1) alpha = F.leaky_relu(alpha, self.negative_slope) alpha = softmax(alpha, hyperedge_index[0], num_nodes=x.size(0)) alpha = F.dropout(alpha, p=self.dropout, training=self.training) D = scatter_add(hyperedge_weight[hyperedge_index[1]], hyperedge_index[0], dim=0, dim_size=num_nodes) D = 1.0 / D D[D == float("inf")] = 0 B = scatter_add(x.new_ones(hyperedge_index.size(1)), hyperedge_index[1], dim=0, dim_size=num_edges) B = 1.0 / B B[B == float("inf")] = 0 self.flow = 'source_to_target' out = self.propagate(hyperedge_index, x=x, norm=B, alpha=alpha, size=(num_nodes, num_edges)) self.flow = 'target_to_source' out = self.propagate(hyperedge_index, x=out, norm=D, alpha=alpha, size=(num_edges, num_nodes)) if self.concat is True: out = out.view(-1, self.heads * self.out_channels) else: out = out.mean(dim=1) if self.bias is not None: out = out + self.bias return out
def message(self, x_j: Tensor, norm_i: Tensor, alpha: Tensor) -> Tensor: H, F = self.heads, self.out_channels out = norm_i.view(-1, 1, 1) * x_j.view(-1, H, F) if alpha is not None: out = alpha.view(-1, self.heads, 1) * out return out def __repr__(self): return "{}({}, {})".format(self.__class__.__name__, self.in_channels, self.out_channels)