Source code for torch_geometric.datasets.reddit

import os
import os.path as osp
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.utils import coalesce


[docs]class Reddit(InMemoryDataset): r"""The Reddit dataset from the `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper, containing Reddit posts belonging to different communities. Args: root (str): Root directory where the dataset should be saved. transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) force_reload (bool, optional): Whether to re-process the dataset. (default: :obj:`False`) **STATS:** .. list-table:: :widths: 10 10 10 10 :header-rows: 1 * - #nodes - #edges - #features - #classes * - 232,965 - 114,615,892 - 602 - 41 """ url = 'https://data.dgl.ai/dataset/reddit.zip' def __init__( self, root: str, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, force_reload: bool = False, ) -> None: super().__init__(root, transform, pre_transform, force_reload=force_reload) self.load(self.processed_paths[0]) @property def raw_file_names(self) -> List[str]: return ['reddit_data.npz', 'reddit_graph.npz'] @property def processed_file_names(self) -> str: return 'data.pt' def download(self) -> None: path = download_url(self.url, self.raw_dir) extract_zip(path, self.raw_dir) os.unlink(path) def process(self) -> None: import scipy.sparse as sp data = np.load(osp.join(self.raw_dir, 'reddit_data.npz')) x = torch.from_numpy(data['feature']).to(torch.float) y = torch.from_numpy(data['label']).to(torch.long) split = torch.from_numpy(data['node_types']) adj = sp.load_npz(osp.join(self.raw_dir, 'reddit_graph.npz')) row = torch.from_numpy(adj.row).to(torch.long) col = torch.from_numpy(adj.col).to(torch.long) edge_index = torch.stack([row, col], dim=0) edge_index = coalesce(edge_index, num_nodes=x.size(0)) data = Data(x=x, edge_index=edge_index, y=y) data.train_mask = split == 1 data.val_mask = split == 2 data.test_mask = split == 3 data = data if self.pre_transform is None else self.pre_transform(data) self.save([data], self.processed_paths[0])