import os
import os.path as osp
from typing import Callable, List, Optional
import numpy as np
import torch
from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.utils import coalesce
[docs]class Reddit(InMemoryDataset):
r"""The Reddit dataset from the `"Inductive Representation Learning on
Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper, containing
Reddit posts belonging to different communities.
Args:
root (str): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 10 10 10 10
:header-rows: 1
* - #nodes
- #edges
- #features
- #classes
* - 232,965
- 114,615,892
- 602
- 41
"""
url = 'https://data.dgl.ai/dataset/reddit.zip'
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0])
@property
def raw_file_names(self) -> List[str]:
return ['reddit_data.npz', 'reddit_graph.npz']
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
path = download_url(self.url, self.raw_dir)
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
import scipy.sparse as sp
data = np.load(osp.join(self.raw_dir, 'reddit_data.npz'))
x = torch.from_numpy(data['feature']).to(torch.float)
y = torch.from_numpy(data['label']).to(torch.long)
split = torch.from_numpy(data['node_types'])
adj = sp.load_npz(osp.join(self.raw_dir, 'reddit_graph.npz'))
row = torch.from_numpy(adj.row).to(torch.long)
col = torch.from_numpy(adj.col).to(torch.long)
edge_index = torch.stack([row, col], dim=0)
edge_index = coalesce(edge_index, num_nodes=x.size(0))
data = Data(x=x, edge_index=edge_index, y=y)
data.train_mask = split == 1
data.val_mask = split == 2
data.test_mask = split == 3
data = data if self.pre_transform is None else self.pre_transform(data)
self.save([data], self.processed_paths[0])