Source code for torch_geometric.loader.data_list_loader

from typing import List, Union

import torch

from torch_geometric.data import Dataset
from torch_geometric.data.data import BaseData


def collate_fn(data_list):
    return data_list


[docs]class DataListLoader(torch.utils.data.DataLoader): r"""A data loader which batches data objects from a :class:`torch_geometric.data.dataset` to a :python:`Python` list. Data objects can be either of type :class:`~torch_geometric.data.Data` or :class:`~torch_geometric.data.HeteroData`. .. note:: This data loader should be used for multi-GPU support via :class:`torch_geometric.nn.DataParallel`. Args: dataset (Dataset): The dataset from which to load the data. batch_size (int, optional): How many samples per batch to load. (default: :obj:`1`) shuffle (bool, optional): If set to :obj:`True`, the data will be reshuffled at every epoch. (default: :obj:`False`) **kwargs (optional): Additional arguments of :class:`torch.utils.data.DataLoader`, such as :obj:`drop_last` or :obj:`num_workers`. """ def __init__(self, dataset: Union[Dataset, List[BaseData]], batch_size: int = 1, shuffle: bool = False, **kwargs): # Remove for PyTorch Lightning: kwargs.pop('collate_fn', None) super().__init__(dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_fn, **kwargs)