Source code for torch_geometric.nn.conv.fa_conv

import typing
from typing import Optional, Tuple, Union

import torch.nn.functional as F
from torch import Tensor

from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.conv.gcn_conv import gcn_norm
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.typing import PairTensor  # noqa
from torch_geometric.typing import (
    Adj,
    NoneType,
    OptPairTensor,
    OptTensor,
    SparseTensor,
)
from torch_geometric.utils import is_torch_sparse_tensor
from torch_geometric.utils.sparse import set_sparse_value

if typing.TYPE_CHECKING:
    from typing import overload
else:
    from torch.jit import _overload_method as overload


[docs]class FAConv(MessagePassing): r"""The Frequency Adaptive Graph Convolution operator from the `"Beyond Low-Frequency Information in Graph Convolutional Networks" <https://arxiv.org/abs/2101.00797>`_ paper. .. math:: \mathbf{x}^{\prime}_i= \epsilon \cdot \mathbf{x}^{(0)}_i + \sum_{j \in \mathcal{N}(i)} \frac{\alpha_{i,j}}{\sqrt{d_i d_j}} \mathbf{x}_{j} where :math:`\mathbf{x}^{(0)}_i` and :math:`d_i` denote the initial feature representation and node degree of node :math:`i`, respectively. The attention coefficients :math:`\alpha_{i,j}` are computed as .. math:: \mathbf{\alpha}_{i,j} = \textrm{tanh}(\mathbf{a}^{\top}[\mathbf{x}_i, \mathbf{x}_j]) based on the trainable parameter vector :math:`\mathbf{a}`. Args: channels (int): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. eps (float, optional): :math:`\epsilon`-value. (default: :obj:`0.1`) dropout (float, optional): Dropout probability of the normalized coefficients which exposes each node to a stochastically sampled neighborhood during training. (default: :obj:`0`). cached (bool, optional): If set to :obj:`True`, the layer will cache the computation of :math:`\sqrt{d_i d_j}` on first execution, and will use the cached version for further executions. This parameter should only be set to :obj:`True` in transductive learning scenarios. (default: :obj:`False`) add_self_loops (bool, optional): If set to :obj:`False`, will not add self-loops to the input graph. (default: :obj:`True`) normalize (bool, optional): Whether to add self-loops (if :obj:`add_self_loops` is :obj:`True`) and compute symmetric normalization coefficients on the fly. If set to :obj:`False`, :obj:`edge_weight` needs to be provided in the layer's :meth:`forward` method. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. Shapes: - **input:** node features :math:`(|\mathcal{V}|, F)`, initial node features :math:`(|\mathcal{V}|, F)`, edge indices :math:`(2, |\mathcal{E}|)`, edge weights :math:`(|\mathcal{E}|)` *(optional)* - **output:** node features :math:`(|\mathcal{V}|, F)` or :math:`((|\mathcal{V}|, F), ((2, |\mathcal{E}|), (|\mathcal{E}|)))` if :obj:`return_attention_weights=True` """ _cached_edge_index: Optional[OptPairTensor] _cached_adj_t: Optional[SparseTensor] _alpha: OptTensor def __init__(self, channels: int, eps: float = 0.1, dropout: float = 0.0, cached: bool = False, add_self_loops: bool = True, normalize: bool = True, **kwargs): kwargs.setdefault('aggr', 'add') super().__init__(**kwargs) self.channels = channels self.eps = eps self.dropout = dropout self.cached = cached self.add_self_loops = add_self_loops self.normalize = normalize self._cached_edge_index = None self._cached_adj_t = None self._alpha = None self.att_l = Linear(channels, 1, bias=False) self.att_r = Linear(channels, 1, bias=False) self.reset_parameters()
[docs] def reset_parameters(self): super().reset_parameters() self.att_l.reset_parameters() self.att_r.reset_parameters() self._cached_edge_index = None self._cached_adj_t = None
@overload def forward( self, x: Tensor, x_0: Tensor, edge_index: Adj, edge_weight: OptTensor = None, return_attention_weights: NoneType = None, ) -> Tensor: pass @overload def forward( # noqa: F811 self, x: Tensor, x_0: Tensor, edge_index: Tensor, edge_weight: OptTensor = None, return_attention_weights: bool = None, ) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: pass @overload def forward( # noqa: F811 self, x: Tensor, x_0: Tensor, edge_index: SparseTensor, edge_weight: OptTensor = None, return_attention_weights: bool = None, ) -> Tuple[Tensor, SparseTensor]: pass
[docs] def forward( # noqa: F811 self, x: Tensor, x_0: Tensor, edge_index: Adj, edge_weight: OptTensor = None, return_attention_weights: Optional[bool] = None, ) -> Union[ Tensor, Tuple[Tensor, Tuple[Tensor, Tensor]], Tuple[Tensor, SparseTensor], ]: r"""Runs the forward pass of the module. Args: x (torch.Tensor): The node features. x_0 (torch.Tensor): The initial input node features. edge_index (torch.Tensor or SparseTensor): The edge indices. edge_weight (torch.Tensor, optional): The edge weights. (default: :obj:`None`) return_attention_weights (bool, optional): If set to :obj:`True`, will additionally return the tuple :obj:`(edge_index, attention_weights)`, holding the computed attention weights for each edge. (default: :obj:`None`) """ if self.normalize: if isinstance(edge_index, Tensor): assert edge_weight is None cache = self._cached_edge_index if cache is None: edge_index, edge_weight = gcn_norm( # yapf: disable edge_index, None, x.size(self.node_dim), False, self.add_self_loops, self.flow, dtype=x.dtype) if self.cached: self._cached_edge_index = (edge_index, edge_weight) else: edge_index, edge_weight = cache[0], cache[1] elif isinstance(edge_index, SparseTensor): assert not edge_index.has_value() cache = self._cached_adj_t if cache is None: edge_index = gcn_norm( # yapf: disable edge_index, None, x.size(self.node_dim), False, self.add_self_loops, self.flow, dtype=x.dtype) if self.cached: self._cached_adj_t = edge_index else: edge_index = cache else: if isinstance(edge_index, Tensor) and not is_torch_sparse_tensor(edge_index): assert edge_weight is not None elif isinstance(edge_index, SparseTensor): assert edge_index.has_value() alpha_l = self.att_l(x) alpha_r = self.att_r(x) # propagate_type: (x: Tensor, alpha: PairTensor, # edge_weight: OptTensor) out = self.propagate(edge_index, x=x, alpha=(alpha_l, alpha_r), edge_weight=edge_weight) alpha = self._alpha self._alpha = None if self.eps != 0.0: out = out + self.eps * x_0 if isinstance(return_attention_weights, bool): assert alpha is not None if isinstance(edge_index, Tensor): if is_torch_sparse_tensor(edge_index): # TODO TorchScript requires to return a tuple adj = set_sparse_value(edge_index, alpha) return out, (adj, alpha) else: return out, (edge_index, alpha) elif isinstance(edge_index, SparseTensor): return out, edge_index.set_value(alpha, layout='coo') else: return out
def message(self, x_j: Tensor, alpha_j: Tensor, alpha_i: Tensor, edge_weight: OptTensor) -> Tensor: assert edge_weight is not None alpha = (alpha_j + alpha_i).tanh().squeeze(-1) self._alpha = alpha alpha = F.dropout(alpha, p=self.dropout, training=self.training) return x_j * (alpha * edge_weight).view(-1, 1) def __repr__(self) -> str: return f'{self.__class__.__name__}({self.channels}, eps={self.eps})'