Source code for torch_geometric.nn.conv.gravnet_conv

import warnings
from typing import Optional, Union

import torch
from torch import Tensor

import torch_geometric.typing
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.dense.linear import Linear
from torch_geometric.typing import OptPairTensor  # noqa
from torch_geometric.typing import OptTensor, PairOptTensor, PairTensor

if torch_geometric.typing.WITH_TORCH_CLUSTER:
    from torch_cluster import knn
else:
    knn = None


[docs]class GravNetConv(MessagePassing): r"""The GravNet operator from the `"Learning Representations of Irregular Particle-detector Geometry with Distance-weighted Graph Networks" <https://arxiv.org/abs/1902.07987>`_ paper, where the graph is dynamically constructed using nearest neighbors. The neighbors are constructed in a learnable low-dimensional projection of the feature space. A second projection of the input feature space is then propagated from the neighbors to each vertex using distance weights that are derived by applying a Gaussian function to the distances. Args: in_channels (int): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. out_channels (int): The number of output channels. space_dimensions (int): The dimensionality of the space used to construct the neighbors; referred to as :math:`S` in the paper. propagate_dimensions (int): The number of features to be propagated between the vertices; referred to as :math:`F_{\textrm{LR}}` in the paper. k (int): The number of nearest neighbors. **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. Shapes: - **input:** node features :math:`(|\mathcal{V}|, F_{in})` or :math:`((|\mathcal{V_s}|, F_{in}), (|\mathcal{V_t}|, F_{in}))` if bipartite, batch vector :math:`(|\mathcal{V}|)` or :math:`((|\mathcal{V}_s|), (|\mathcal{V}_t|))` if bipartite *(optional)* - **output:** node features :math:`(|\mathcal{V}|, F_{out})` or :math:`(|\mathcal{V}_t|, F_{out})` if bipartite """ def __init__(self, in_channels: int, out_channels: int, space_dimensions: int, propagate_dimensions: int, k: int, num_workers: Optional[int] = None, **kwargs): super().__init__(aggr=['mean', 'max'], flow='source_to_target', **kwargs) if knn is None: raise ImportError('`GravNetConv` requires `torch-cluster`.') if num_workers is not None: warnings.warn( "'num_workers' attribute in '{self.__class__.__name__}' is " "deprecated and will be removed in a future release") self.in_channels = in_channels self.out_channels = out_channels self.k = k self.lin_s = Linear(in_channels, space_dimensions) self.lin_h = Linear(in_channels, propagate_dimensions) self.lin_out1 = Linear(in_channels, out_channels, bias=False) self.lin_out2 = Linear(2 * propagate_dimensions, out_channels) self.reset_parameters()
[docs] def reset_parameters(self): super().reset_parameters() self.lin_s.reset_parameters() self.lin_h.reset_parameters() self.lin_out1.reset_parameters() self.lin_out2.reset_parameters()
[docs] def forward( self, x: Union[Tensor, PairTensor], batch: Union[OptTensor, Optional[PairTensor]] = None, ) -> Tensor: is_bipartite: bool = True if isinstance(x, Tensor): x = (x, x) is_bipartite = False if x[0].dim() != 2: raise ValueError("Static graphs not supported in 'GravNetConv'") b: PairOptTensor = (None, None) if isinstance(batch, Tensor): b = (batch, batch) elif isinstance(batch, tuple): assert batch is not None b = (batch[0], batch[1]) h_l: Tensor = self.lin_h(x[0]) s_l: Tensor = self.lin_s(x[0]) s_r: Tensor = self.lin_s(x[1]) if is_bipartite else s_l edge_index = knn(s_l, s_r, self.k, b[0], b[1]).flip([0]) edge_weight = (s_l[edge_index[0]] - s_r[edge_index[1]]).pow(2).sum(-1) edge_weight = torch.exp(-10. * edge_weight) # 10 gives a better spread # propagate_type: (x: OptPairTensor, edge_weight: OptTensor) out = self.propagate(edge_index, x=(h_l, None), edge_weight=edge_weight, size=(s_l.size(0), s_r.size(0))) return self.lin_out1(x[1]) + self.lin_out2(out)
def message(self, x_j: Tensor, edge_weight: Tensor) -> Tensor: return x_j * edge_weight.unsqueeze(1) def __repr__(self) -> str: return (f'{self.__class__.__name__}({self.in_channels}, ' f'{self.out_channels}, k={self.k})')