Source code for torch_geometric.nn.models.metapath2vec

from typing import Dict, List, Optional, Tuple

import torch
from torch import Tensor
from torch.nn import Embedding
from torch.utils.data import DataLoader

from torch_geometric.index import index2ptr
from torch_geometric.typing import EdgeType, NodeType, OptTensor
from torch_geometric.utils import sort_edge_index

EPS = 1e-15


[docs]class MetaPath2Vec(torch.nn.Module): r"""The MetaPath2Vec model from the `"metapath2vec: Scalable Representation Learning for Heterogeneous Networks" <https://ericdongyx.github.io/papers/ KDD17-dong-chawla-swami-metapath2vec.pdf>`_ paper where random walks based on a given :obj:`metapath` are sampled in a heterogeneous graph, and node embeddings are learned via negative sampling optimization. .. note:: For an example of using MetaPath2Vec, see `examples/hetero/metapath2vec.py <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ hetero/metapath2vec.py>`_. Args: edge_index_dict (Dict[Tuple[str, str, str], torch.Tensor]): Dictionary holding edge indices for each :obj:`(src_node_type, rel_type, dst_node_type)` edge type present in the heterogeneous graph. embedding_dim (int): The size of each embedding vector. metapath (List[Tuple[str, str, str]]): The metapath described as a list of :obj:`(src_node_type, rel_type, dst_node_type)` tuples. walk_length (int): The walk length. context_size (int): The actual context size which is considered for positive samples. This parameter increases the effective sampling rate by reusing samples across different source nodes. walks_per_node (int, optional): The number of walks to sample for each node. (default: :obj:`1`) num_negative_samples (int, optional): The number of negative samples to use for each positive sample. (default: :obj:`1`) num_nodes_dict (Dict[str, int], optional): Dictionary holding the number of nodes for each node type. (default: :obj:`None`) sparse (bool, optional): If set to :obj:`True`, gradients w.r.t. to the weight matrix will be sparse. (default: :obj:`False`) """ def __init__( self, edge_index_dict: Dict[EdgeType, Tensor], embedding_dim: int, metapath: List[EdgeType], walk_length: int, context_size: int, walks_per_node: int = 1, num_negative_samples: int = 1, num_nodes_dict: Optional[Dict[NodeType, int]] = None, sparse: bool = False, ): super().__init__() if num_nodes_dict is None: num_nodes_dict = {} for keys, edge_index in edge_index_dict.items(): key = keys[0] N = int(edge_index[0].max() + 1) num_nodes_dict[key] = max(N, num_nodes_dict.get(key, N)) key = keys[-1] N = int(edge_index[1].max() + 1) num_nodes_dict[key] = max(N, num_nodes_dict.get(key, N)) self.rowptr_dict, self.col_dict, self.rowcount_dict = {}, {}, {} for keys, edge_index in edge_index_dict.items(): sizes = (num_nodes_dict[keys[0]], num_nodes_dict[keys[-1]]) row, col = sort_edge_index(edge_index, num_nodes=max(sizes)).cpu() rowptr = index2ptr(row, size=sizes[0]) self.rowptr_dict[keys] = rowptr self.col_dict[keys] = col self.rowcount_dict[keys] = rowptr[1:] - rowptr[:-1] for edge_type1, edge_type2 in zip(metapath[:-1], metapath[1:]): if edge_type1[-1] != edge_type2[0]: raise ValueError( "Found invalid metapath. Ensure that the destination node " "type matches with the source node type across all " "consecutive edge types.") assert walk_length + 1 >= context_size if walk_length > len(metapath) and metapath[0][0] != metapath[-1][-1]: raise AttributeError( "The 'walk_length' is longer than the given 'metapath', but " "the 'metapath' does not denote a cycle") self.embedding_dim = embedding_dim self.metapath = metapath self.walk_length = walk_length self.context_size = context_size self.walks_per_node = walks_per_node self.num_negative_samples = num_negative_samples self.num_nodes_dict = num_nodes_dict types = {x[0] for x in metapath} | {x[-1] for x in metapath} types = sorted(list(types)) count = 0 self.start, self.end = {}, {} for key in types: self.start[key] = count count += num_nodes_dict[key] self.end[key] = count offset = [self.start[metapath[0][0]]] offset += [self.start[keys[-1]] for keys in metapath ] * int((walk_length / len(metapath)) + 1) offset = offset[:walk_length + 1] assert len(offset) == walk_length + 1 self.offset = torch.tensor(offset) # + 1 denotes a dummy node used to link to for isolated nodes. self.embedding = Embedding(count + 1, embedding_dim, sparse=sparse) self.dummy_idx = count self.reset_parameters()
[docs] def reset_parameters(self): r"""Resets all learnable parameters of the module.""" self.embedding.reset_parameters()
[docs] def forward(self, node_type: str, batch: OptTensor = None) -> Tensor: r"""Returns the embeddings for the nodes in :obj:`batch` of type :obj:`node_type`. """ emb = self.embedding.weight[self.start[node_type]:self.end[node_type]] return emb if batch is None else emb.index_select(0, batch)
[docs] def loader(self, **kwargs): r"""Returns the data loader that creates both positive and negative random walks on the heterogeneous graph. Args: **kwargs (optional): Arguments of :class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`, :obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`. """ return DataLoader(range(self.num_nodes_dict[self.metapath[0][0]]), collate_fn=self._sample, **kwargs)
def _pos_sample(self, batch: Tensor) -> Tensor: batch = batch.repeat(self.walks_per_node) rws = [batch] for i in range(self.walk_length): edge_type = self.metapath[i % len(self.metapath)] batch = sample( self.rowptr_dict[edge_type], self.col_dict[edge_type], self.rowcount_dict[edge_type], batch, num_neighbors=1, dummy_idx=self.dummy_idx, ).view(-1) rws.append(batch) rw = torch.stack(rws, dim=-1) rw.add_(self.offset.view(1, -1)) rw[rw > self.dummy_idx] = self.dummy_idx walks = [] num_walks_per_rw = 1 + self.walk_length + 1 - self.context_size for j in range(num_walks_per_rw): walks.append(rw[:, j:j + self.context_size]) return torch.cat(walks, dim=0) def _neg_sample(self, batch: Tensor) -> Tensor: batch = batch.repeat(self.walks_per_node * self.num_negative_samples) rws = [batch] for i in range(self.walk_length): keys = self.metapath[i % len(self.metapath)] batch = torch.randint(0, self.num_nodes_dict[keys[-1]], (batch.size(0), ), dtype=torch.long) rws.append(batch) rw = torch.stack(rws, dim=-1) rw.add_(self.offset.view(1, -1)) walks = [] num_walks_per_rw = 1 + self.walk_length + 1 - self.context_size for j in range(num_walks_per_rw): walks.append(rw[:, j:j + self.context_size]) return torch.cat(walks, dim=0) def _sample(self, batch: List[int]) -> Tuple[Tensor, Tensor]: if not isinstance(batch, Tensor): batch = torch.tensor(batch, dtype=torch.long) return self._pos_sample(batch), self._neg_sample(batch)
[docs] def loss(self, pos_rw: Tensor, neg_rw: Tensor) -> Tensor: r"""Computes the loss given positive and negative random walks.""" # Positive loss. start, rest = pos_rw[:, 0], pos_rw[:, 1:].contiguous() h_start = self.embedding(start).view(pos_rw.size(0), 1, self.embedding_dim) h_rest = self.embedding(rest.view(-1)).view(pos_rw.size(0), -1, self.embedding_dim) out = (h_start * h_rest).sum(dim=-1).view(-1) pos_loss = -torch.log(torch.sigmoid(out) + EPS).mean() # Negative loss. start, rest = neg_rw[:, 0], neg_rw[:, 1:].contiguous() h_start = self.embedding(start).view(neg_rw.size(0), 1, self.embedding_dim) h_rest = self.embedding(rest.view(-1)).view(neg_rw.size(0), -1, self.embedding_dim) out = (h_start * h_rest).sum(dim=-1).view(-1) neg_loss = -torch.log(1 - torch.sigmoid(out) + EPS).mean() return pos_loss + neg_loss
[docs] def test(self, train_z: Tensor, train_y: Tensor, test_z: Tensor, test_y: Tensor, solver: str = "lbfgs", *args, **kwargs) -> float: r"""Evaluates latent space quality via a logistic regression downstream task. """ from sklearn.linear_model import LogisticRegression clf = LogisticRegression(solver=solver, *args, **kwargs).fit(train_z.detach().cpu().numpy(), train_y.detach().cpu().numpy()) return clf.score(test_z.detach().cpu().numpy(), test_y.detach().cpu().numpy())
def __repr__(self) -> str: return (f'{self.__class__.__name__}(' f'{self.embedding.weight.size(0) - 1}, ' f'{self.embedding.weight.size(1)})')
def sample(rowptr: Tensor, col: Tensor, rowcount: Tensor, subset: Tensor, num_neighbors: int, dummy_idx: int) -> Tensor: mask = subset >= dummy_idx subset = subset.clamp(min=0, max=rowptr.numel() - 2) count = rowcount[subset] rand = torch.rand((subset.size(0), num_neighbors), device=subset.device) rand *= count.to(rand.dtype).view(-1, 1) rand = rand.to(torch.long) + rowptr[subset].view(-1, 1) rand = rand.clamp(max=col.numel() - 1) # If last node is isolated. col = col[rand] if col.numel() > 0 else rand col[mask | (count == 0)] = dummy_idx return col