import torch_geometric
from torch_geometric.data import Data
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.transforms import BaseTransform
[docs]@functional_transform('gcn_norm')
class GCNNorm(BaseTransform):
r"""Applies the GCN normalization from the `"Semi-supervised Classification
with Graph Convolutional Networks" <https://arxiv.org/abs/1609.02907>`_
paper (functional name: :obj:`gcn_norm`).
.. math::
\mathbf{\hat{A}} = \mathbf{\hat{D}}^{-1/2} (\mathbf{A} + \mathbf{I})
\mathbf{\hat{D}}^{-1/2}
where :math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij} + 1`.
"""
def __init__(self, add_self_loops: bool = True):
self.add_self_loops = add_self_loops
def forward(self, data: Data) -> Data:
gcn_norm = torch_geometric.nn.conv.gcn_conv.gcn_norm
assert 'edge_index' in data or 'adj_t' in data
if 'edge_index' in data:
data.edge_index, data.edge_weight = gcn_norm(
data.edge_index, data.edge_weight, data.num_nodes,
add_self_loops=self.add_self_loops)
else:
data.adj_t = gcn_norm(data.adj_t,
add_self_loops=self.add_self_loops)
return data
def __repr__(self) -> str:
return (f'{self.__class__.__name__}('
f'add_self_loops={self.add_self_loops})')