torch_geometric.nn.aggr.LSTMAggregation
- class LSTMAggregation(in_channels: int, out_channels: int, **kwargs)[source]
Bases:
Aggregation
Performs LSTM-style aggregation in which the elements to aggregate are interpreted as a sequence, as described in the “Inductive Representation Learning on Large Graphs” paper.
Note
LSTMAggregation
requires sorted indicesindex
as input. Specifically, if you use this aggregation as part ofMessagePassing
, ensure thatedge_index
is sorted by destination nodes, either by manually sorting edge indices viasort_edge_index()
or by callingtorch_geometric.data.Data.sort()
.Warning
LSTMAggregation
is not a permutation-invariant operator.- Parameters:
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2, max_num_elements: Optional[int] = None) Tensor [source]
Forward pass.
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
index
orptr
must be defined. (default:None
)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
index
orptr
must be defined. (default:None
)dim_size (int, optional) – The size of the output tensor at dimension
dim
after aggregation. (default:None
)dim (int, optional) – The dimension in which to aggregate. (default:
-2
)max_num_elements – (int, optional): The maximum number of elements within a single aggregation group. (default:
None
)