torch_geometric.nn.conv.CGConv

class CGConv(channels: Union[int, Tuple[int, int]], dim: int = 0, aggr: str = 'add', batch_norm: bool = False, bias: bool = True, **kwargs)[source]

Bases: MessagePassing

The crystal graph convolutional operator from the “Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties” paper.

\[\mathbf{x}^{\prime}_i = \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \sigma \left( \mathbf{z}_{i,j} \mathbf{W}_f + \mathbf{b}_f \right) \odot g \left( \mathbf{z}_{i,j} \mathbf{W}_s + \mathbf{b}_s \right)\]

where \(\mathbf{z}_{i,j} = [ \mathbf{x}_i, \mathbf{x}_j, \mathbf{e}_{i,j} ]\) denotes the concatenation of central node features, neighboring node features and edge features. In addition, \(\sigma\) and \(g\) denote the sigmoid and softplus functions, respectively.

Parameters:
  • channels (int or tuple) – Size of each input sample. A tuple corresponds to the sizes of source and target dimensionalities.

  • dim (int, optional) – Edge feature dimensionality. (default: 0)

  • aggr (str, optional) – The aggregation operator to use ("add", "mean", "max"). (default: "add")

  • batch_norm (bool, optional) – If set to True, will make use of batch normalization. (default: False)

  • bias (bool, optional) – If set to False, the layer will not learn an additive bias. (default: True)

  • **kwargs (optional) – Additional arguments of torch_geometric.nn.conv.MessagePassing.

Shapes:
  • input: node features \((|\mathcal{V}|, F)\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\), edge features \((|\mathcal{E}|, D)\) (optional)

  • output: node features \((|\mathcal{V}|, F)\) or \((|\mathcal{V_t}|, F_{t})\) if bipartite

forward(x: Union[Tensor, Tuple[Tensor, Tensor]], edge_index: Union[Tensor, SparseTensor], edge_attr: Optional[Tensor] = None) Tensor[source]

Runs the forward pass of the module.

reset_parameters()[source]

Resets all learnable parameters of the module.