torch_geometric.nn.conv.GINConv
- class GINConv(nn: Callable, eps: float = 0.0, train_eps: bool = False, **kwargs)[source]
Bases:
MessagePassing
The graph isomorphism operator from the “How Powerful are Graph Neural Networks?” paper.
\[\mathbf{x}^{\prime}_i = h_{\mathbf{\Theta}} \left( (1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \right)\]or
\[\mathbf{X}^{\prime} = h_{\mathbf{\Theta}} \left( \left( \mathbf{A} + (1 + \epsilon) \cdot \mathbf{I} \right) \cdot \mathbf{X} \right),\]here \(h_{\mathbf{\Theta}}\) denotes a neural network, .i.e. an MLP.
- Parameters:
nn (torch.nn.Module) – A neural network \(h_{\mathbf{\Theta}}\) that maps node features
x
of shape[-1, in_channels]
to shape[-1, out_channels]
, e.g., defined bytorch.nn.Sequential
.eps (float, optional) – (Initial) \(\epsilon\)-value. (default:
0.
)train_eps (bool, optional) – If set to
True
, \(\epsilon\) will be a trainable parameter. (default:False
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- Shapes:
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite