torch_geometric.nn.conv.GMMConv
- class GMMConv(in_channels: Union[int, Tuple[int, int]], out_channels: int, dim: int, kernel_size: int, separate_gaussians: bool = False, aggr: str = 'mean', root_weight: bool = True, bias: bool = True, **kwargs)[source]
Bases:
MessagePassing
The gaussian mixture model convolutional operator from the “Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs” paper.
\[\mathbf{x}^{\prime}_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \frac{1}{K} \sum_{k=1}^K \mathbf{w}_k(\mathbf{e}_{i,j}) \odot \mathbf{\Theta}_k \mathbf{x}_j,\]where
\[\mathbf{w}_k(\mathbf{e}) = \exp \left( -\frac{1}{2} {\left( \mathbf{e} - \mathbf{\mu}_k \right)}^{\top} \Sigma_k^{-1} \left( \mathbf{e} - \mathbf{\mu}_k \right) \right)\]denotes a weighting function based on trainable mean vector \(\mathbf{\mu}_k\) and diagonal covariance matrix \(\mathbf{\Sigma}_k\).
Note
The edge attribute \(\mathbf{e}_{ij}\) is usually given by \(\mathbf{e}_{ij} = \mathbf{p}_j - \mathbf{p}_i\), where \(\mathbf{p}_i\) denotes the position of node \(i\) (see
torch_geometric.transform.Cartesian
).- Parameters:
in_channels (int or tuple) – Size of each input sample, or
-1
to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.out_channels (int) – Size of each output sample.
dim (int) – Pseudo-coordinate dimensionality.
kernel_size (int) – Number of kernels \(K\).
separate_gaussians (bool, optional) – If set to
True
, will learn separate GMMs for every pair of input and output channel, inspired by traditional CNNs. (default:False
)aggr (str, optional) – The aggregation operator to use (
"add"
,"mean"
,"max"
). (default:"mean"
)root_weight (bool, optional) – If set to
False
, the layer will not add transformed root node features to the output. (default:True
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- Shapes:
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\), edge features \((|\mathcal{E}|, D)\) (optional)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite