torch_geometric.nn.conv.HGTConv
- class HGTConv(in_channels: Union[int, Dict[str, int]], out_channels: int, metadata: Tuple[List[str], List[Tuple[str, str, str]]], heads: int = 1, **kwargs)[source]
Bases:
MessagePassing
The Heterogeneous Graph Transformer (HGT) operator from the “Heterogeneous Graph Transformer” paper.
Note
For an example of using HGT, see examples/hetero/hgt_dblp.py.
- Parameters:
in_channels (int or Dict[str, int]) – Size of each input sample of every node type, or
-1
to derive the size from the first input(s) to the forward method.out_channels (int) – Size of each output sample.
metadata (Tuple[List[str], List[Tuple[str, str, str]]]) – The metadata of the heterogeneous graph, i.e. its node and edge types given by a list of strings and a list of string triplets, respectively. See
torch_geometric.data.HeteroData.metadata()
for more information.heads (int, optional) – Number of multi-head-attentions. (default:
1
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x_dict: Dict[str, Tensor], edge_index_dict: Dict[Tuple[str, str, str], Union[Tensor, SparseTensor]]) Dict[str, Optional[Tensor]] [source]
Runs the forward pass of the module.
- Parameters:
x_dict (Dict[str, torch.Tensor]) – A dictionary holding input node features for each individual node type.
edge_index_dict (Dict[Tuple[str, str, str], torch.Tensor]) – A dictionary holding graph connectivity information for each individual edge type, either as a
torch.Tensor
of shape[2, num_edges]
or atorch_sparse.SparseTensor
.
- Return type:
Dict[str, Optional[torch.Tensor]]
- The output node embeddings for each node type. In case a node type does not receive any message, its output will be set toNone
.