torch_geometric.nn.conv.LEConv
- class LEConv(in_channels: Union[int, Tuple[int, int]], out_channels: int, bias: bool = True, **kwargs)[source]
Bases:
MessagePassing
The local extremum graph neural network operator from the “ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations” paper.
LEConv
finds the importance of nodes with respect to their neighbors using the difference operator:\[\mathbf{x}^{\prime}_i = \mathbf{x}_i \cdot \mathbf{\Theta}_1 + \sum_{j \in \mathcal{N}(i)} e_{j,i} \cdot (\mathbf{\Theta}_2 \mathbf{x}_i - \mathbf{\Theta}_3 \mathbf{x}_j)\]where \(e_{j,i}\) denotes the edge weight from source node
j
to target nodei
(default:1
)- Parameters:
in_channels (int or tuple) – Size of each input sample, or
-1
to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.out_channels (int) – Size of each output sample.
bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
).**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- Shapes:
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\), edge features \((|\mathcal{E}|, D)\) (optional)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite