torch_geometric.nn.norm.InstanceNorm
- class InstanceNorm(in_channels: int, eps: float = 1e-05, momentum: float = 0.1, affine: bool = False, track_running_stats: bool = False)[source]
Bases:
_InstanceNorm
Applies instance normalization over each individual example in a batch of node features as described in the “Instance Normalization: The Missing Ingredient for Fast Stylization” paper.
\[\mathbf{x}^{\prime}_i = \frac{\mathbf{x} - \textrm{E}[\mathbf{x}]}{\sqrt{\textrm{Var}[\mathbf{x}] + \epsilon}} \odot \gamma + \beta\]The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch.
- Parameters:
in_channels (int) – Size of each input sample.
eps (float, optional) – A value added to the denominator for numerical stability. (default:
1e-5
)momentum (float, optional) – The value used for the running mean and running variance computation. (default:
0.1
)affine (bool, optional) – If set to
True
, this module has learnable affine parameters \(\gamma\) and \(\beta\). (default:False
)track_running_stats (bool, optional) – If set to
True
, this module tracks the running mean and variance, and when set toFalse
, this module does not track such statistics and always uses instance statistics in both training and eval modes. (default:False
)
- forward(x: Tensor, batch: Optional[Tensor] = None, batch_size: Optional[int] = None) Tensor [source]
Forward pass.
- Parameters:
x (torch.Tensor) – The source tensor.
batch (torch.Tensor, optional) – The batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each element to a specific example. (default:
None
)batch_size (int, optional) – The number of examples \(B\). Automatically calculated if not given. (default:
None
)