torch_geometric.transforms.AddRandomMetaPaths
- class AddRandomMetaPaths(metapaths: List[List[Tuple[str, str, str]]], drop_orig_edge_types: bool = False, keep_same_node_type: bool = False, drop_unconnected_node_types: bool = False, walks_per_node: Union[int, List[int]] = 1, sample_ratio: float = 1.0)[source]
Bases:
BaseTransform
Adds additional edge types similar to
AddMetaPaths
. The key difference is that the added edge type is given by multiple random walks along the metapath. One might want to increase the number of random walks viawalks_per_node
to achieve competitive performance withAddMetaPaths
.- Parameters:
metapaths (List[List[Tuple[str, str, str]]]) – The metapaths described by a list of lists of
(src_node_type, rel_type, dst_node_type)
tuples.drop_orig_edge_types (bool, optional) – If set to
True
, existing edge types will be dropped. (default:False
)keep_same_node_type (bool, optional) – If set to
True
, existing edge types between the same node type are not dropped even in casedrop_orig_edge_types
is set toTrue
. (default:False
)drop_unconnected_node_types (bool, optional) – If set to
True
, will drop node types not connected by any edge type. (default:False
)walks_per_node (int, List[int], optional) – The number of random walks for each starting node in a metapath. (default:
1
)sample_ratio (float, optional) – The ratio of source nodes to start random walks from. (default:
1.0
)