import os.path as osp
from typing import Callable, Optional
import torch
from torch_geometric.data import InMemoryDataset, download_url
from torch_geometric.io import read_npz
[docs]class CitationFull(InMemoryDataset):
r"""The full citation network datasets from the
`"Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via
Ranking" <https://arxiv.org/abs/1707.03815>`_ paper.
Nodes represent documents and edges represent citation links.
Datasets include :obj:`"Cora"`, :obj:`"Cora_ML"`, :obj:`"CiteSeer"`,
:obj:`"DBLP"`, :obj:`"PubMed"`.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (:obj:`"Cora"`, :obj:`"Cora_ML"`
:obj:`"CiteSeer"`, :obj:`"DBLP"`, :obj:`"PubMed"`).
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
to_undirected (bool, optional): Whether the original graph is
converted to an undirected one. (default: :obj:`True`)
**STATS:**
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - Name
- #nodes
- #edges
- #features
- #classes
* - Cora
- 19,793
- 126,842
- 8,710
- 70
* - Cora_ML
- 2,995
- 16,316
- 2,879
- 7
* - CiteSeer
- 4,230
- 10,674
- 602
- 6
* - DBLP
- 17,716
- 105,734
- 1,639
- 4
* - PubMed
- 19,717
- 88,648
- 500
- 3
"""
url = 'https://github.com/abojchevski/graph2gauss/raw/master/data/{}.npz'
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
to_undirected: bool = True,
):
self.name = name.lower()
self.to_undirected = to_undirected
assert self.name in ['cora', 'cora_ml', 'citeseer', 'dblp', 'pubmed']
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> str:
return f'{self.name}.npz'
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self):
download_url(self.url.format(self.name), self.raw_dir)
def process(self):
data = read_npz(self.raw_paths[0], to_undirected=self.to_undirected)
data = data if self.pre_transform is None else self.pre_transform(data)
data, slices = self.collate([data])
torch.save((data, slices), self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name.capitalize()}Full()'
[docs]class CoraFull(CitationFull):
r"""Alias for :class:`~torch_geometric.datasets.CitationFull` with
:obj:`name="Cora"`.
**STATS:**
.. list-table::
:widths: 10 10 10 10
:header-rows: 1
* - #nodes
- #edges
- #features
- #classes
* - 19,793
- 126,842
- 8,710
- 70
"""
def __init__(self, root: str, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None):
super().__init__(root, 'cora', transform, pre_transform)
def download(self):
super().download()
def process(self):
super().process()