torch_geometric.utils
Reduces all values from the |
|
Returns the indices that sort the tensor |
|
Concatenates the given sequence of tensors |
|
Reduces all values in the first dimension of the |
|
Sorts the elements of the |
|
Returns the cumulative sum of elements of |
|
Computes the (unweighted) degree of a given one-dimensional index tensor. |
|
Computes a sparsely evaluated softmax. |
|
Performs an indirect stable sort using a sequence of keys. |
|
Row-wise sorts |
|
Row-wise sorts |
|
Returns |
|
Converts the graph given by |
|
Returns |
|
Removes every self-loop in the graph given by |
|
Segregates self-loops from the graph. |
|
Adds a self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by |
|
Adds remaining self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by |
|
Returns the edge features or weights of self-loops \((i, i)\) of every node \(i \in \mathcal{V}\) in the graph given by |
|
Returns |
|
Removes the isolated nodes from the graph given by |
|
Returns the number of hops the model is aggregating information from. |
|
Returns the induced subgraph of |
|
Returns the induced subgraph of the bipartite graph |
|
Computes the induced subgraph of |
|
Randomly drops nodes from the adjacency matrix |
|
Randomly drops edges from the adjacency matrix |
|
Drops edges from the adjacency matrix |
|
Randomly drops edges from the adjacency matrix |
|
The homophily of a graph characterizes how likely nodes with the same label are near each other in a graph. |
|
The degree assortativity coefficient from the "Mixing patterns in networks" paper. |
|
Applies normalization to the edges of a graph. |
|
Computes the graph Laplacian of the graph given by |
|
Computes the mesh Laplacian of a mesh given by |
|
Returns a new tensor which masks the |
|
Converts indices to a mask representation. |
|
Converts a mask to an index representation. |
|
Selects the input tensor or input list according to a given index or mask vector. |
|
Narrows the input tensor or input list to the specified range. |
|
Given a sparse batch of node features \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times F}\) (with \(N_i\) indicating the number of nodes in graph \(i\)), creates a dense node feature tensor \(\mathbf{X} \in \mathbb{R}^{B \times N_{\max} \times F}\) (with \(N_{\max} = \max_i^B N_i\)). |
|
Converts batched sparse adjacency matrices given by edge indices and edge attributes to a single dense batched adjacency matrix. |
|
Given a contiguous batch of tensors \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times *}\) (with \(N_i\) indicating the number of elements in example \(i\)), creates a nested PyTorch tensor. |
|
Given a nested PyTorch tensor, creates a contiguous batch of tensors \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times *}\), and optionally a batch vector which assigns each element to a specific example. |
|
Converts a dense adjacency matrix to a sparse adjacency matrix defined by edge indices and edge attributes. |
|
Returns |
|
Returns |
|
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a |
|
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a |
|
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a |
|
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a |
|
Converts a |
|
Matrix product of sparse matrix with dense matrix. |
|
Splits |
|
Splits the |
|
Taskes a one-dimensional |
|
Computes the normalized cut \(\mathbf{e}_{i,j} \cdot \left( \frac{1}{\deg(i)} + \frac{1}{\deg(j)} \right)\) of a weighted graph given by edge indices and edge attributes. |
|
Returns the edge indices of a two-dimensional grid graph with height |
|
Computes (normalized) geodesic distances of a mesh given by |
|
Converts a graph given by edge indices and edge attributes to a scipy sparse matrix. |
|
Converts a scipy sparse matrix to edge indices and edge attributes. |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a graph given by |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a |
|
Converts a SMILES string to a |
|
Converts a |
|
Returns the |
|
Returns the |
|
Returns the |
|
Samples random negative edges of a graph given by |
|
Samples random negative edges of multiple graphs given by |
|
Samples a negative edge |
|
Randomly shuffle the feature matrix |
|
Randomly masks feature from the feature matrix |
|
Randomly adds edges to |
|
The tree decomposition algorithm of molecules from the "Junction Tree Variational Autoencoder for Molecular Graph Generation" paper. |
|
Returns the output embeddings of all |
|
Trims the |
|
Calculates the personalized PageRank (PPR) vector for all or a subset of nodes using a variant of the Andersen algorithm. |
|
Splits the edges of a |
Utility package.
- scatter(src: Tensor, index: Tensor, dim: int = 0, dim_size: Optional[int] = None, reduce: str = 'sum') Tensor [source]
Reduces all values from the
src
tensor at the indices specified in theindex
tensor along a given dimensiondim
. See the documentation of thetorch_scatter
package for more information.- Parameters:
src (torch.Tensor) – The source tensor.
index (torch.Tensor) – The index tensor.
dim (int, optional) – The dimension along which to index. (default:
0
)dim_size (int, optional) – The size of the output tensor at dimension
dim
. If set toNone
, will create a minimal-sized output tensor according toindex.max() + 1
. (default:None
)reduce (str, optional) – The reduce operation (
"sum"
,"mean"
,"mul"
,"min"
or"max"
,"any"
). (default:"sum"
)
- Return type:
- group_argsort(src: Tensor, index: Tensor, dim: int = 0, num_groups: Optional[int] = None, descending: bool = False, return_consecutive: bool = False, stable: bool = False) Tensor [source]
Returns the indices that sort the tensor
src
along a given dimension in ascending order by value. In contrast totorch.argsort()
, sorting is performed in groups according to the values inindex
.- Parameters:
src (torch.Tensor) – The source tensor.
index (torch.Tensor) – The index tensor.
dim (int, optional) – The dimension along which to index. (default:
0
)num_groups (int, optional) – The number of groups. (default:
None
)descending (bool, optional) – Controls the sorting order (ascending or descending). (default:
False
)return_consecutive (bool, optional) – If set to
True
, will not offset the output to start from0
for each group. (default:False
)stable (bool, optional) – Controls the relative order of equivalent elements. (default:
False
)
Example
>>> src = torch.tensor([0, 1, 5, 4, 3, 2, 6, 7, 8]) >>> index = torch.tensor([0, 0, 1, 1, 1, 1, 2, 2, 2]) >>> group_argsort(src, index) tensor([0, 1, 3, 2, 1, 0, 0, 1, 2])
- Return type:
- group_cat(tensors: Union[List[Tensor], Tuple[Tensor, ...]], indices: Union[List[Tensor], Tuple[Tensor, ...]], dim: int = 0, return_index: bool = False) Union[Tensor, Tuple[Tensor, Tensor]] [source]
Concatenates the given sequence of tensors
tensors
in the given dimensiondim
. Different fromtorch.cat()
, values along the concatenating dimension are grouped according to the indices defined in theindex
tensors. All tensors must have the same shape (except in the concatenating dimension).- Parameters:
Example
>>> x1 = torch.tensor([[0.2716, 0.4233], ... [0.3166, 0.0142], ... [0.2371, 0.3839], ... [0.4100, 0.0012]]) >>> x2 = torch.tensor([[0.3752, 0.5782], ... [0.7757, 0.5999]]) >>> index1 = torch.tensor([0, 0, 1, 2]) >>> index2 = torch.tensor([0, 2]) >>> scatter_concat([x1,x2], [index1, index2], dim=0) tensor([[0.2716, 0.4233], [0.3166, 0.0142], [0.3752, 0.5782], [0.2371, 0.3839], [0.4100, 0.0012], [0.7757, 0.5999]])
- segment(src: Tensor, ptr: Tensor, reduce: str = 'sum') Tensor [source]
Reduces all values in the first dimension of the
src
tensor within the ranges specified in theptr
. See the documentation of thetorch_scatter
package for more information.- Parameters:
src (torch.Tensor) – The source tensor.
ptr (torch.Tensor) – A monotonically increasing pointer tensor that refers to the boundaries of segments such that
ptr[0] = 0
andptr[-1] = src.size(0)
.reduce (str, optional) – The reduce operation (
"sum"
,"mean"
,"min"
or"max"
). (default:"sum"
)
- Return type:
- index_sort(inputs: Tensor, max_value: Optional[int] = None, stable: bool = False) Tuple[Tensor, Tensor] [source]
Sorts the elements of the
inputs
tensor in ascending order. It is expected thatinputs
is one-dimensional and that it only contains positive integer values. Ifmax_value
is given, it can be used by the underlying algorithm for better performance.- Parameters:
inputs (torch.Tensor) – A vector with positive integer values.
max_value (int, optional) – The maximum value stored inside
inputs
. This value can be an estimation, but needs to be greater than or equal to the real maximum. (default:None
)stable (bool, optional) – Makes the sorting routine stable, which guarantees that the order of equivalent elements is preserved. (default:
False
)
- Return type:
- cumsum(x: Tensor, dim: int = 0) Tensor [source]
Returns the cumulative sum of elements of
x
. In contrast totorch.cumsum()
, prepends the output with zero.- Parameters:
x (torch.Tensor) – The input tensor.
dim (int, optional) – The dimension to do the operation over. (default:
0
)
Example
>>> x = torch.tensor([2, 4, 1]) >>> cumsum(x) tensor([0, 2, 6, 7])
- Return type:
- degree(index: Tensor, num_nodes: Optional[int] = None, dtype: Optional[dtype] = None) Tensor [source]
Computes the (unweighted) degree of a given one-dimensional index tensor.
- Parameters:
index (LongTensor) – Index tensor.
num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofindex
. (default:None
)dtype (
torch.dtype
, optional) – The desired data type of the returned tensor.
- Return type:
Tensor
Example
>>> row = torch.tensor([0, 1, 0, 2, 0]) >>> degree(row, dtype=torch.long) tensor([3, 1, 1])
- softmax(src: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, num_nodes: Optional[int] = None, dim: int = 0) Tensor [source]
Computes a sparsely evaluated softmax. Given a value tensor
src
, this function first groups the values along the first dimension based on the indices specified inindex
, and then proceeds to compute the softmax individually for each group.- Parameters:
src (Tensor) – The source tensor.
index (LongTensor, optional) – The indices of elements for applying the softmax. (default:
None
)ptr (LongTensor, optional) – If given, computes the softmax based on sorted inputs in CSR representation. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofindex
. (default:None
)dim (int, optional) – The dimension in which to normalize. (default:
0
)
- Return type:
Tensor
Examples
>>> src = torch.tensor([1., 1., 1., 1.]) >>> index = torch.tensor([0, 0, 1, 2]) >>> ptr = torch.tensor([0, 2, 3, 4]) >>> softmax(src, index) tensor([0.5000, 0.5000, 1.0000, 1.0000])
>>> softmax(src, None, ptr) tensor([0.5000, 0.5000, 1.0000, 1.0000])
>>> src = torch.randn(4, 4) >>> ptr = torch.tensor([0, 4]) >>> softmax(src, index, dim=-1) tensor([[0.7404, 0.2596, 1.0000, 1.0000], [0.1702, 0.8298, 1.0000, 1.0000], [0.7607, 0.2393, 1.0000, 1.0000], [0.8062, 0.1938, 1.0000, 1.0000]])
- lexsort(keys: List[Tensor], dim: int = -1, descending: bool = False) Tensor [source]
Performs an indirect stable sort using a sequence of keys.
Given multiple sorting keys, returns an array of integer indices that describe their sort order. The last key in the sequence is used for the primary sort order, the second-to-last key for the secondary sort order, and so on.
- Parameters:
keys ([torch.Tensor]) – The \(k\) different columns to be sorted. The last key is the primary sort key.
dim (int, optional) – The dimension to sort along. (default:
-1
)descending (bool, optional) – Controls the sorting order (ascending or descending). (default:
False
)
- Return type:
- sort_edge_index(edge_index: Tensor, edge_attr: Union[Tensor, None, List[Tensor], str] = '???', num_nodes: Optional[int] = None, sort_by_row: bool = True) Union[Tensor, Tuple[Tensor, Optional[Tensor]], Tuple[Tensor, List[Tensor]]] [source]
Row-wise sorts
edge_index
.- Parameters:
edge_index (torch.Tensor) – The edge indices.
edge_attr (torch.Tensor or List[torch.Tensor], optional) – Edge weights or multi-dimensional edge features. If given as a list, will re-shuffle and remove duplicates for all its entries. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)sort_by_row (bool, optional) – If set to
False
, will sortedge_index
column-wise/by destination node. (default:True
)
- Return type:
LongTensor
ifedge_attr
is not passed, else (LongTensor
,Optional[Tensor]
orList[Tensor]]
)
Warning
From PyG >= 2.3.0 onwards, this function will always return a tuple whenever
edge_attr
is passed as an argument (even in case it is set toNone
).Examples
>>> edge_index = torch.tensor([[2, 1, 1, 0], [1, 2, 0, 1]]) >>> edge_attr = torch.tensor([[1], [2], [3], [4]]) >>> sort_edge_index(edge_index) tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
>>> sort_edge_index(edge_index, edge_attr) (tensor([[0, 1, 1, 2], [1, 0, 2, 1]]), tensor([[4], [3], [2], [1]]))
- coalesce(edge_index: Tensor, edge_attr: Union[Tensor, None, List[Tensor], str] = '???', num_nodes: Optional[int] = None, reduce: str = 'sum', is_sorted: bool = False, sort_by_row: bool = True) Union[Tensor, Tuple[Tensor, Optional[Tensor]], Tuple[Tensor, List[Tensor]]] [source]
Row-wise sorts
edge_index
and removes its duplicated entries. Duplicate entries inedge_attr
are merged by scattering them together according to the givenreduce
option.- Parameters:
edge_index (torch.Tensor) – The edge indices.
edge_attr (torch.Tensor or List[torch.Tensor], optional) – Edge weights or multi-dimensional edge features. If given as a list, will re-shuffle and remove duplicates for all its entries. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)reduce (str, optional) – The reduce operation to use for merging edge features (
"sum"
,"mean"
,"min"
,"max"
,"mul"
,"any"
). (default:"sum"
)is_sorted (bool, optional) – If set to
True
, will expectedge_index
to be already sorted row-wise.sort_by_row (bool, optional) – If set to
False
, will sortedge_index
column-wise.
- Return type:
LongTensor
ifedge_attr
is not passed, else (LongTensor
,Optional[Tensor]
orList[Tensor]]
)
Warning
From PyG >= 2.3.0 onwards, this function will always return a tuple whenever
edge_attr
is passed as an argument (even in case it is set toNone
).Example
>>> edge_index = torch.tensor([[1, 1, 2, 3], ... [3, 3, 1, 2]]) >>> edge_attr = torch.tensor([1., 1., 1., 1.]) >>> coalesce(edge_index) tensor([[1, 2, 3], [3, 1, 2]])
>>> # Sort `edge_index` column-wise >>> coalesce(edge_index, sort_by_row=False) tensor([[2, 3, 1], [1, 2, 3]])
>>> coalesce(edge_index, edge_attr) (tensor([[1, 2, 3], [3, 1, 2]]), tensor([2., 1., 1.]))
>>> # Use 'mean' operation to merge edge features >>> coalesce(edge_index, edge_attr, reduce='mean') (tensor([[1, 2, 3], [3, 1, 2]]), tensor([1., 1., 1.]))
- is_undirected(edge_index: Tensor, edge_attr: Union[Tensor, None, List[Tensor]] = None, num_nodes: Optional[int] = None) bool [source]
Returns
True
if the graph given byedge_index
is undirected.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor or List[Tensor], optional) – Edge weights or multi- dimensional edge features. If given as a list, will check for equivalence in all its entries. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max(edge_index) + 1
. (default:None
)
- Return type:
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> weight = torch.tensor([0, 0, 1]) >>> is_undirected(edge_index, weight) True
>>> weight = torch.tensor([0, 1, 1]) >>> is_undirected(edge_index, weight) False
- to_undirected(edge_index: Tensor, edge_attr: Union[Tensor, None, List[Tensor], str] = '???', num_nodes: Optional[int] = None, reduce: str = 'add') Union[Tensor, Tuple[Tensor, Optional[Tensor]], Tuple[Tensor, List[Tensor]]] [source]
Converts the graph given by
edge_index
to an undirected graph such that \((j,i) \in \mathcal{E}\) for every edge \((i,j) \in \mathcal{E}\).- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor or List[Tensor], optional) – Edge weights or multi- dimensional edge features. If given as a list, will remove duplicates for all its entries. (default:
None
)num_nodes (int, optional) – The number of nodes, i.e.
max(edge_index) + 1
. (default:None
)reduce (str, optional) – The reduce operation to use for merging edge features (
"add"
,"mean"
,"min"
,"max"
,"mul"
). (default:"add"
)
- Return type:
LongTensor
ifedge_attr
is not passed, else (LongTensor
,Optional[Tensor]
orList[Tensor]]
)
Warning
From PyG >= 2.3.0 onwards, this function will always return a tuple whenever
edge_attr
is passed as an argument (even in case it is set toNone
).Examples
>>> edge_index = torch.tensor([[0, 1, 1], ... [1, 0, 2]]) >>> to_undirected(edge_index) tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
>>> edge_index = torch.tensor([[0, 1, 1], ... [1, 0, 2]]) >>> edge_weight = torch.tensor([1., 1., 1.]) >>> to_undirected(edge_index, edge_weight) (tensor([[0, 1, 1, 2], [1, 0, 2, 1]]), tensor([2., 2., 1., 1.]))
>>> # Use 'mean' operation to merge edge features >>> to_undirected(edge_index, edge_weight, reduce='mean') (tensor([[0, 1, 1, 2], [1, 0, 2, 1]]), tensor([1., 1., 1., 1.]))
- contains_self_loops(edge_index: Tensor) bool [source]
Returns
True
if the graph given byedge_index
contains self-loops.- Parameters:
edge_index (LongTensor) – The edge indices.
- Return type:
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> contains_self_loops(edge_index) True
>>> edge_index = torch.tensor([[0, 1, 1], ... [1, 0, 2]]) >>> contains_self_loops(edge_index) False
- remove_self_loops(edge_index: Tensor, edge_attr: Optional[Tensor] = None) Tuple[Tensor, Optional[Tensor]] [source]
Removes every self-loop in the graph given by
edge_index
, so that \((i,i) \not\in \mathcal{E}\) for every \(i \in \mathcal{V}\).- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)
- Return type:
(
LongTensor
,Tensor
)
Example
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> edge_attr = [[1, 2], [3, 4], [5, 6]] >>> edge_attr = torch.tensor(edge_attr) >>> remove_self_loops(edge_index, edge_attr) (tensor([[0, 1], [1, 0]]), tensor([[1, 2], [3, 4]]))
- segregate_self_loops(edge_index: Tensor, edge_attr: Optional[Tensor] = None) Tuple[Tensor, Optional[Tensor], Tensor, Optional[Tensor]] [source]
Segregates self-loops from the graph.
- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)
- Return type:
(
LongTensor
,Tensor
,LongTensor
,Tensor
)
Example
>>> edge_index = torch.tensor([[0, 0, 1], ... [0, 1, 0]]) >>> (edge_index, edge_attr, ... loop_edge_index, ... loop_edge_attr) = segregate_self_loops(edge_index) >>> loop_edge_index tensor([[0], [0]])
- add_self_loops(edge_index: Tensor, edge_attr: Optional[Tensor] = None, fill_value: Optional[Union[float, Tensor, str]] = None, num_nodes: Optional[Union[int, Tuple[int, int]]] = None) Tuple[Tensor, Optional[Tensor]] [source]
Adds a self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by
edge_index
. In case the graph is weighted or has multi-dimensional edge features (edge_attr != None
), edge features of self-loops will be added according tofill_value
.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)fill_value (float or Tensor or str, optional) – The way to generate edge features of self-loops (in case
edge_attr != None
). If given asfloat
ortorch.Tensor
, edge features of self-loops will be directly given byfill_value
. If given asstr
, edge features of self-loops are computed by aggregating all features of edges that point to the specific node, according to a reduce operation. ("add"
,"mean"
,"min"
,"max"
,"mul"
). (default:1.
)num_nodes (int or Tuple[int, int], optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. If given as a tuple, thenedge_index
is interpreted as a bipartite graph with shape(num_src_nodes, num_dst_nodes)
. (default:None
)
- Return type:
(
LongTensor
,Tensor
)
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> edge_weight = torch.tensor([0.5, 0.5, 0.5]) >>> add_self_loops(edge_index) (tensor([[0, 1, 0, 0, 1], [1, 0, 0, 0, 1]]), None)
>>> add_self_loops(edge_index, edge_weight) (tensor([[0, 1, 0, 0, 1], [1, 0, 0, 0, 1]]), tensor([0.5000, 0.5000, 0.5000, 1.0000, 1.0000]))
>>> # edge features of self-loops are filled by constant `2.0` >>> add_self_loops(edge_index, edge_weight, ... fill_value=2.) (tensor([[0, 1, 0, 0, 1], [1, 0, 0, 0, 1]]), tensor([0.5000, 0.5000, 0.5000, 2.0000, 2.0000]))
>>> # Use 'add' operation to merge edge features for self-loops >>> add_self_loops(edge_index, edge_weight, ... fill_value='add') (tensor([[0, 1, 0, 0, 1], [1, 0, 0, 0, 1]]), tensor([0.5000, 0.5000, 0.5000, 1.0000, 0.5000]))
- add_remaining_self_loops(edge_index: Tensor, edge_attr: Optional[Tensor] = None, fill_value: Optional[Union[float, Tensor, str]] = None, num_nodes: Optional[int] = None) Tuple[Tensor, Optional[Tensor]] [source]
Adds remaining self-loop \((i,i) \in \mathcal{E}\) to every node \(i \in \mathcal{V}\) in the graph given by
edge_index
. In case the graph is weighted or has multi-dimensional edge features (edge_attr != None
), edge features of non-existing self-loops will be added according tofill_value
.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)fill_value (float or Tensor or str, optional) – The way to generate edge features of self-loops (in case
edge_attr != None
). If given asfloat
ortorch.Tensor
, edge features of self-loops will be directly given byfill_value
. If given asstr
, edge features of self-loops are computed by aggregating all features of edges that point to the specific node, according to a reduce operation. ("add"
,"mean"
,"min"
,"max"
,"mul"
). (default:1.
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
- Return type:
(
LongTensor
,Tensor
)
Example
>>> edge_index = torch.tensor([[0, 1], ... [1, 0]]) >>> edge_weight = torch.tensor([0.5, 0.5]) >>> add_remaining_self_loops(edge_index, edge_weight) (tensor([[0, 1, 0, 1], [1, 0, 0, 1]]), tensor([0.5000, 0.5000, 1.0000, 1.0000]))
- get_self_loop_attr(edge_index: Tensor, edge_attr: Optional[Tensor] = None, num_nodes: Optional[int] = None) Tensor [source]
Returns the edge features or weights of self-loops \((i, i)\) of every node \(i \in \mathcal{V}\) in the graph given by
edge_index
. Edge features of missing self-loops not present inedge_index
will be filled with zeros. Ifedge_attr
is not given, it will be the vector of ones.Note
This operation is analogous to getting the diagonal elements of the dense adjacency matrix.
- Parameters:
- Return type:
Tensor
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> edge_weight = torch.tensor([0.2, 0.3, 0.5]) >>> get_self_loop_attr(edge_index, edge_weight) tensor([0.5000, 0.0000])
>>> get_self_loop_attr(edge_index, edge_weight, num_nodes=4) tensor([0.5000, 0.0000, 0.0000, 0.0000])
- contains_isolated_nodes(edge_index: Tensor, num_nodes: Optional[int] = None) bool [source]
Returns
True
if the graph given byedge_index
contains isolated nodes.- Parameters:
- Return type:
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> contains_isolated_nodes(edge_index) False
>>> contains_isolated_nodes(edge_index, num_nodes=3) True
- remove_isolated_nodes(edge_index: Tensor, edge_attr: Optional[Tensor] = None, num_nodes: Optional[int] = None) Tuple[Tensor, Optional[Tensor], Tensor] [source]
Removes the isolated nodes from the graph given by
edge_index
with optional edge attributesedge_attr
. In addition, returns a mask of shape[num_nodes]
to manually filter out isolated node features later on. Self-loops are preserved for non-isolated nodes.- Parameters:
- Return type:
(LongTensor, Tensor, BoolTensor)
Examples
>>> edge_index = torch.tensor([[0, 1, 0], ... [1, 0, 0]]) >>> edge_index, edge_attr, mask = remove_isolated_nodes(edge_index) >>> mask # node mask (2 nodes) tensor([True, True])
>>> edge_index, edge_attr, mask = remove_isolated_nodes(edge_index, ... num_nodes=3) >>> mask # node mask (3 nodes) tensor([True, True, False])
- get_num_hops(model: Module) int [source]
Returns the number of hops the model is aggregating information from.
Note
This function counts the number of message passing layers as an approximation of the total number of hops covered by the model. Its output may not necessarily be correct in case message passing layers perform multi-hop aggregation, e.g., as in
ChebConv
.Example
>>> class GNN(torch.nn.Module): ... def __init__(self): ... super().__init__() ... self.conv1 = GCNConv(3, 16) ... self.conv2 = GCNConv(16, 16) ... self.lin = Linear(16, 2) ... ... def forward(self, x, edge_index): ... x = self.conv1(x, edge_index).relu() ... x = self.conv2(x, edge_index).relu() ... return self.lin(x) >>> get_num_hops(GNN()) 2
- Return type:
- subgraph(subset: Union[Tensor, List[int]], edge_index: Tensor, edge_attr: Optional[Tensor] = None, relabel_nodes: bool = False, num_nodes: Optional[int] = None, *, return_edge_mask: bool = False) Union[Tuple[Tensor, Optional[Tensor]], Tuple[Tensor, Optional[Tensor], Tensor]] [source]
Returns the induced subgraph of
(edge_index, edge_attr)
containing the nodes insubset
.- Parameters:
subset (LongTensor, BoolTensor or [int]) – The nodes to keep.
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)relabel_nodes (bool, optional) – If set to
True
, the resultingedge_index
will be relabeled to hold consecutive indices starting from zero. (default:False
)num_nodes (int, optional) – The number of nodes, i.e.
max(edge_index) + 1
. (default:None
)return_edge_mask (bool, optional) – If set to
True
, will return the edge mask to filter out additional edge features. (default:False
)
- Return type:
(
LongTensor
,Tensor
)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6], ... [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5]]) >>> edge_attr = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) >>> subset = torch.tensor([3, 4, 5]) >>> subgraph(subset, edge_index, edge_attr) (tensor([[3, 4, 4, 5], [4, 3, 5, 4]]), tensor([ 7., 8., 9., 10.]))
>>> subgraph(subset, edge_index, edge_attr, return_edge_mask=True) (tensor([[3, 4, 4, 5], [4, 3, 5, 4]]), tensor([ 7., 8., 9., 10.]), tensor([False, False, False, False, False, False, True, True, True, True, False, False]))
- bipartite_subgraph(subset: Union[Tuple[Tensor, Tensor], Tuple[List[int], List[int]]], edge_index: Tensor, edge_attr: Optional[Tensor] = None, relabel_nodes: bool = False, size: Optional[Tuple[int, int]] = None, return_edge_mask: bool = False) Union[Tuple[Tensor, Optional[Tensor]], Tuple[Tensor, Optional[Tensor], Optional[Tensor]]] [source]
Returns the induced subgraph of the bipartite graph
(edge_index, edge_attr)
containing the nodes insubset
.- Parameters:
subset (Tuple[Tensor, Tensor] or tuple([int],[int])) – The nodes to keep.
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)relabel_nodes (bool, optional) – If set to
True
, the resultingedge_index
will be relabeled to hold consecutive indices starting from zero. (default:False
)size (tuple, optional) – The number of nodes. (default:
None
)return_edge_mask (bool, optional) – If set to
True
, will return the edge mask to filter out additional edge features. (default:False
)
- Return type:
(
LongTensor
,Tensor
)
Examples
>>> edge_index = torch.tensor([[0, 5, 2, 3, 3, 4, 4, 3, 5, 5, 6], ... [0, 0, 3, 2, 0, 0, 2, 1, 2, 3, 1]]) >>> edge_attr = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) >>> subset = (torch.tensor([2, 3, 5]), torch.tensor([2, 3])) >>> bipartite_subgraph(subset, edge_index, edge_attr) (tensor([[2, 3, 5, 5], [3, 2, 2, 3]]), tensor([ 3, 4, 9, 10]))
>>> bipartite_subgraph(subset, edge_index, edge_attr, ... return_edge_mask=True) (tensor([[2, 3, 5, 5], [3, 2, 2, 3]]), tensor([ 3, 4, 9, 10]), tensor([False, False, True, True, False, False, False, False, True, True, False]))
- k_hop_subgraph(node_idx: Union[int, List[int], Tensor], num_hops: int, edge_index: Tensor, relabel_nodes: bool = False, num_nodes: Optional[int] = None, flow: str = 'source_to_target', directed: bool = False) Tuple[Tensor, Tensor, Tensor, Tensor] [source]
Computes the induced subgraph of
edge_index
around all nodes innode_idx
reachable within \(k\) hops.The
flow
argument denotes the direction of edges for finding \(k\)-hop neighbors. If set to"source_to_target"
, then the method will find all neighbors that point to the initial set of seed nodes innode_idx.
This mimics the natural flow of message passing in Graph Neural Networks.The method returns (1) the nodes involved in the subgraph, (2) the filtered
edge_index
connectivity, (3) the mapping from node indices innode_idx
to their new location, and (4) the edge mask indicating which edges were preserved.- Parameters:
node_idx (int, list, tuple or
torch.Tensor
) – The central seed node(s).num_hops (int) – The number of hops \(k\).
edge_index (LongTensor) – The edge indices.
relabel_nodes (bool, optional) – If set to
True
, the resultingedge_index
will be relabeled to hold consecutive indices starting from zero. (default:False
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)flow (str, optional) – The flow direction of \(k\)-hop aggregation (
"source_to_target"
or"target_to_source"
). (default:"source_to_target"
)directed (bool, optional) – If set to
True
, will only include directed edges to the seed nodesnode_idx
. (default:False
)
- Return type:
(
LongTensor
,LongTensor
,LongTensor
,BoolTensor
)
Examples
>>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 2, 4, 4, 6, 6]])
>>> # Center node 6, 2-hops >>> subset, edge_index, mapping, edge_mask = k_hop_subgraph( ... 6, 2, edge_index, relabel_nodes=True) >>> subset tensor([2, 3, 4, 5, 6]) >>> edge_index tensor([[0, 1, 2, 3], [2, 2, 4, 4]]) >>> mapping tensor([4]) >>> edge_mask tensor([False, False, True, True, True, True]) >>> subset[mapping] tensor([6])
>>> edge_index = torch.tensor([[1, 2, 4, 5], ... [0, 1, 5, 6]]) >>> (subset, edge_index, ... mapping, edge_mask) = k_hop_subgraph([0, 6], 2, ... edge_index, ... relabel_nodes=True) >>> subset tensor([0, 1, 2, 4, 5, 6]) >>> edge_index tensor([[1, 2, 3, 4], [0, 1, 4, 5]]) >>> mapping tensor([0, 5]) >>> edge_mask tensor([True, True, True, True]) >>> subset[mapping] tensor([0, 6])
- dropout_node(edge_index: Tensor, p: float = 0.5, num_nodes: Optional[int] = None, training: bool = True, relabel_nodes: bool = False) Tuple[Tensor, Tensor, Tensor] [source]
Randomly drops nodes from the adjacency matrix
edge_index
with probabilityp
using samples from a Bernoulli distribution.The method returns (1) the retained
edge_index
, (2) the edge mask indicating which edges were retained. (3) the node mask indicating which nodes were retained.- Parameters:
edge_index (LongTensor) – The edge indices.
p (float, optional) – Dropout probability. (default:
0.5
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)relabel_nodes (bool, optional) – If set to True, the resulting edge_index will be relabeled to hold consecutive indices starting from zero.
- Return type:
(
LongTensor
,BoolTensor
,BoolTensor
)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, edge_mask, node_mask = dropout_node(edge_index) >>> edge_index tensor([[0, 1], [1, 0]]) >>> edge_mask tensor([ True, True, False, False, False, False]) >>> node_mask tensor([ True, True, False, False])
- dropout_edge(edge_index: Tensor, p: float = 0.5, force_undirected: bool = False, training: bool = True) Tuple[Tensor, Tensor] [source]
Randomly drops edges from the adjacency matrix
edge_index
with probabilityp
using samples from a Bernoulli distribution.The method returns (1) the retained
edge_index
, (2) the edge mask or index indicating which edges were retained, depending on the argumentforce_undirected
.- Parameters:
edge_index (LongTensor) – The edge indices.
p (float, optional) – Dropout probability. (default:
0.5
)force_undirected (bool, optional) – If set to
True
, will either drop or keep both edges of an undirected edge. (default:False
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)
- Return type:
(
LongTensor
,BoolTensor
orLongTensor
)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, edge_mask = dropout_edge(edge_index) >>> edge_index tensor([[0, 1, 2, 2], [1, 2, 1, 3]]) >>> edge_mask # masks indicating which edges are retained tensor([ True, False, True, True, True, False])
>>> edge_index, edge_id = dropout_edge(edge_index, ... force_undirected=True) >>> edge_index tensor([[0, 1, 2, 1, 2, 3], [1, 2, 3, 0, 1, 2]]) >>> edge_id # indices indicating which edges are retained tensor([0, 2, 4, 0, 2, 4])
- dropout_path(edge_index: Tensor, p: float = 0.2, walks_per_node: int = 1, walk_length: int = 3, num_nodes: Optional[int] = None, is_sorted: bool = False, training: bool = True) Tuple[Tensor, Tensor] [source]
Drops edges from the adjacency matrix
edge_index
based on random walks. The source nodes to start random walks from are sampled fromedge_index
with probabilityp
, following a Bernoulli distribution.The method returns (1) the retained
edge_index
, (2) the edge mask indicating which edges were retained.- Parameters:
edge_index (LongTensor) – The edge indices.
p (float, optional) – Sample probability. (default:
0.2
)walks_per_node (int, optional) – The number of walks per node, same as
Node2Vec
. (default:1
)walk_length (int, optional) – The walk length, same as
Node2Vec
. (default:3
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)is_sorted (bool, optional) – If set to
True
, will expectedge_index
to be already sorted row-wise. (default:False
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)
- Return type:
(
LongTensor
,BoolTensor
)
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, edge_mask = dropout_path(edge_index) >>> edge_index tensor([[1, 2], [2, 3]]) >>> edge_mask # masks indicating which edges are retained tensor([False, False, True, False, True, False])
- dropout_adj(edge_index: Tensor, edge_attr: Optional[Tensor] = None, p: float = 0.5, force_undirected: bool = False, num_nodes: Optional[int] = None, training: bool = True) Tuple[Tensor, Optional[Tensor]] [source]
Randomly drops edges from the adjacency matrix
(edge_index, edge_attr)
with probabilityp
using samples from a Bernoulli distribution.Warning
dropout_adj
is deprecated and will be removed in a future release. Usetorch_geometric.utils.dropout_edge
instead.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. (default:
None
)p (float, optional) – Dropout probability. (default:
0.5
)force_undirected (bool, optional) – If set to
True
, will either drop or keep both edges of an undirected edge. (default:False
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_attr = torch.tensor([1, 2, 3, 4, 5, 6]) >>> dropout_adj(edge_index, edge_attr) (tensor([[0, 1, 2, 3], [1, 2, 3, 2]]), tensor([1, 3, 5, 6]))
>>> # The returned graph is kept undirected >>> dropout_adj(edge_index, edge_attr, force_undirected=True) (tensor([[0, 1, 2, 1, 2, 3], [1, 2, 3, 0, 1, 2]]), tensor([1, 3, 5, 1, 3, 5]))
- homophily(edge_index: Union[Tensor, SparseTensor], y: Tensor, batch: Optional[Tensor] = None, method: str = 'edge') Union[float, Tensor] [source]
The homophily of a graph characterizes how likely nodes with the same label are near each other in a graph.
There are many measures of homophily that fits this definition. In particular:
In the “Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs” paper, the homophily is the fraction of edges in a graph which connects nodes that have the same class label:
\[\frac{| \{ (v,w) : (v,w) \in \mathcal{E} \wedge y_v = y_w \} | } {|\mathcal{E}|}\]That measure is called the edge homophily ratio.
In the “Geom-GCN: Geometric Graph Convolutional Networks” paper, edge homophily is normalized across neighborhoods:
\[\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{ | \{ (w,v) : w \in \mathcal{N}(v) \wedge y_v = y_w \} | } { |\mathcal{N}(v)| }\]That measure is called the node homophily ratio.
In the “Large-Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods” paper, edge homophily is modified to be insensitive to the number of classes and size of each class:
\[\frac{1}{C-1} \sum_{k=1}^{C} \max \left(0, h_k - \frac{|\mathcal{C}_k|} {|\mathcal{V}|} \right),\]where \(C\) denotes the number of classes, \(|\mathcal{C}_k|\) denotes the number of nodes of class \(k\), and \(h_k\) denotes the edge homophily ratio of nodes of class \(k\).
Thus, that measure is called the class insensitive edge homophily ratio.
- Parameters:
edge_index (Tensor or SparseTensor) – The graph connectivity.
y (Tensor) – The labels.
batch (LongTensor, optional) – Batch vector\(\mathbf{b} \in {\{ 0, \ldots,B-1\}}^N\), which assigns each node to a specific example. (default:
None
)method (str, optional) – The method used to calculate the homophily, either
"edge"
(first formula),"node"
(second formula) or"edge_insensitive"
(third formula). (default:"edge"
)
Examples
>>> edge_index = torch.tensor([[0, 1, 2, 3], ... [1, 2, 0, 4]]) >>> y = torch.tensor([0, 0, 0, 0, 1]) >>> # Edge homophily ratio >>> homophily(edge_index, y, method='edge') 0.75
>>> # Node homophily ratio >>> homophily(edge_index, y, method='node') 0.6000000238418579
>>> # Class insensitive edge homophily ratio >>> homophily(edge_index, y, method='edge_insensitive') 0.19999998807907104
- assortativity(edge_index: Union[Tensor, SparseTensor]) float [source]
The degree assortativity coefficient from the “Mixing patterns in networks” paper. Assortativity in a network refers to the tendency of nodes to connect with other similar nodes over dissimilar nodes. It is computed from Pearson correlation coefficient of the node degrees.
- Parameters:
edge_index (Tensor or SparseTensor) – The graph connectivity.
- Returns:
float
– The value of the degree assortativity coefficient for the input graph \(\in [-1, 1]\)
Example
>>> edge_index = torch.tensor([[0, 1, 2, 3, 2], ... [1, 2, 0, 1, 3]]) >>> assortativity(edge_index) -0.666667640209198
- normalize_edge_index(edge_index: Tensor, num_nodes: Optional[int] = None, add_self_loops: bool = True, symmetric: bool = True) Tuple[Tensor, Tensor] [source]
Applies normalization to the edges of a graph.
This function can add self-loops to the graph and apply either symmetric or asymmetric normalization based on the node degrees.
- Parameters:
edge_index (LongTensor) – The edge indices.
num_nodes (int, int], optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)add_self_loops (bool, optional) – If set to
False
, will not add self-loops to the input graph. (default:True
)symmetric (bool, optional) – If set to
True
, symmetric normalization (\(D^{-1/2} A D^{-1/2}\)) is used, otherwise asymmetric normalization (\(D^{-1} A\)).
- Return type:
- get_laplacian(edge_index: Tensor, edge_weight: Optional[Tensor] = None, normalization: Optional[str] = None, dtype: Optional[dtype] = None, num_nodes: Optional[int] = None) Tuple[Tensor, Tensor] [source]
Computes the graph Laplacian of the graph given by
edge_index
and optionaledge_weight
.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor, optional) – One-dimensional edge weights. (default:
None
)normalization (str, optional) –
The normalization scheme for the graph Laplacian (default:
None
):1.
None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A}\)2.
"sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)3.
"rw"
: Random-walk normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}\)dtype (torch.dtype, optional) – The desired data type of returned tensor in case
edge_weight=None
. (default:None
)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. (default:None
)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2], ... [1, 0, 2, 1]]) >>> edge_weight = torch.tensor([1., 2., 2., 4.])
>>> # No normalization >>> lap = get_laplacian(edge_index, edge_weight)
>>> # Symmetric normalization >>> lap_sym = get_laplacian(edge_index, edge_weight, normalization='sym')
>>> # Random-walk normalization >>> lap_rw = get_laplacian(edge_index, edge_weight, normalization='rw')
- get_mesh_laplacian(pos: Tensor, face: Tensor, normalization: Optional[str] = None) Tuple[Tensor, Tensor] [source]
Computes the mesh Laplacian of a mesh given by
pos
andface
.Computation is based on the cotangent matrix defined as
\[\begin{split}\mathbf{C}_{ij} = \begin{cases} \frac{\cot \angle_{ikj}~+\cot \angle_{ilj}}{2} & \text{if } i, j \text{ is an edge} \\ -\sum_{j \in N(i)}{C_{ij}} & \text{if } i \text{ is in the diagonal} \\ 0 & \text{otherwise} \end{cases}\end{split}\]Normalization depends on the mass matrix defined as
\[\begin{split}\mathbf{M}_{ij} = \begin{cases} a(i) & \text{if } i \text{ is in the diagonal} \\ 0 & \text{otherwise} \end{cases}\end{split}\]where \(a(i)\) is obtained by joining the barycenters of the triangles around vertex \(i\).
- Parameters:
pos (Tensor) – The node positions.
face (LongTensor) – The face indices.
normalization (str, optional) –
The normalization scheme for the mesh Laplacian (default:
None
):1.
None
: No normalization \(\mathbf{L} = \mathbf{C}\)2.
"sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{M}^{-1/2} \mathbf{C}\mathbf{M}^{-1/2}\)3.
"rw"
: Row-wise normalization \(\mathbf{L} = \mathbf{M}^{-1} \mathbf{C}\)
- Return type:
- mask_select(src: Tensor, dim: int, mask: Tensor) Tensor [source]
Returns a new tensor which masks the
src
tensor along the dimensiondim
according to the boolean maskmask
.- Parameters:
src (torch.Tensor) – The input tensor.
dim (int) – The dimension in which to mask.
mask (torch.BoolTensor) – The 1-D tensor containing the binary mask to index with.
- Return type:
- index_to_mask(index: Tensor, size: Optional[int] = None) Tensor [source]
Converts indices to a mask representation.
- Parameters:
Example
>>> index = torch.tensor([1, 3, 5]) >>> index_to_mask(index) tensor([False, True, False, True, False, True])
>>> index_to_mask(index, size=7) tensor([False, True, False, True, False, True, False])
- Return type:
- mask_to_index(mask: Tensor) Tensor [source]
Converts a mask to an index representation.
- Parameters:
mask (Tensor) – The mask.
Example
>>> mask = torch.tensor([False, True, False]) >>> mask_to_index(mask) tensor([1])
- Return type:
- select(src: Union[Tensor, List[Any], TensorFrame], index_or_mask: Tensor, dim: int) Union[Tensor, List[Any]] [source]
Selects the input tensor or input list according to a given index or mask vector.
- Parameters:
src (torch.Tensor or list) – The input tensor or list.
index_or_mask (torch.Tensor) – The index or mask vector.
dim (int) – The dimension along which to select.
- Return type:
- narrow(src: Union[Tensor, List[Any]], dim: int, start: int, length: int) Union[Tensor, List[Any]] [source]
Narrows the input tensor or input list to the specified range.
- to_dense_batch(x: Tensor, batch: Optional[Tensor] = None, fill_value: float = 0.0, max_num_nodes: Optional[int] = None, batch_size: Optional[int] = None) Tuple[Tensor, Tensor] [source]
Given a sparse batch of node features \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times F}\) (with \(N_i\) indicating the number of nodes in graph \(i\)), creates a dense node feature tensor \(\mathbf{X} \in \mathbb{R}^{B \times N_{\max} \times F}\) (with \(N_{\max} = \max_i^B N_i\)). In addition, a mask of shape \(\mathbf{M} \in \{ 0, 1 \}^{B \times N_{\max}}\) is returned, holding information about the existence of fake-nodes in the dense representation.
- Parameters:
x (Tensor) – Node feature matrix \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times F}\).
batch (LongTensor, optional) – Batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each node to a specific example. Must be ordered. (default:
None
)fill_value (float, optional) – The value for invalid entries in the resulting dense output tensor. (default:
0
)max_num_nodes (int, optional) – The size of the output node dimension. (default:
None
)batch_size (int, optional) – The batch size. (default:
None
)
- Return type:
(
Tensor
,BoolTensor
)
Examples
>>> x = torch.arange(12).view(6, 2) >>> x tensor([[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7], [ 8, 9], [10, 11]])
>>> out, mask = to_dense_batch(x) >>> mask tensor([[True, True, True, True, True, True]])
>>> batch = torch.tensor([0, 0, 1, 2, 2, 2]) >>> out, mask = to_dense_batch(x, batch) >>> out tensor([[[ 0, 1], [ 2, 3], [ 0, 0]], [[ 4, 5], [ 0, 0], [ 0, 0]], [[ 6, 7], [ 8, 9], [10, 11]]]) >>> mask tensor([[ True, True, False], [ True, False, False], [ True, True, True]])
>>> out, mask = to_dense_batch(x, batch, max_num_nodes=4) >>> out tensor([[[ 0, 1], [ 2, 3], [ 0, 0], [ 0, 0]], [[ 4, 5], [ 0, 0], [ 0, 0], [ 0, 0]], [[ 6, 7], [ 8, 9], [10, 11], [ 0, 0]]])
>>> mask tensor([[ True, True, False, False], [ True, False, False, False], [ True, True, True, False]])
- to_dense_adj(edge_index: Tensor, batch: Optional[Tensor] = None, edge_attr: Optional[Tensor] = None, max_num_nodes: Optional[int] = None, batch_size: Optional[int] = None) Tensor [source]
Converts batched sparse adjacency matrices given by edge indices and edge attributes to a single dense batched adjacency matrix.
- Parameters:
edge_index (LongTensor) – The edge indices.
batch (LongTensor, optional) – Batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each node to a specific example. (default:
None
)edge_attr (Tensor, optional) – Edge weights or multi-dimensional edge features. If
edge_index
contains duplicated edges, the dense adjacency matrix output holds the summed up entries ofedge_attr
for duplicated edges. (default:None
)max_num_nodes (int, optional) – The size of the output node dimension. (default:
None
)batch_size (int, optional) – The batch size. (default:
None
)
- Return type:
Tensor
Examples
>>> edge_index = torch.tensor([[0, 0, 1, 2, 3], ... [0, 1, 0, 3, 0]]) >>> batch = torch.tensor([0, 0, 1, 1]) >>> to_dense_adj(edge_index, batch) tensor([[[1., 1.], [1., 0.]], [[0., 1.], [1., 0.]]])
>>> to_dense_adj(edge_index, batch, max_num_nodes=4) tensor([[[1., 1., 0., 0.], [1., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 1., 0., 0.], [1., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]])
>>> edge_attr = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0]) >>> to_dense_adj(edge_index, batch, edge_attr) tensor([[[1., 2.], [3., 0.]], [[0., 4.], [5., 0.]]])
- to_nested_tensor(x: Tensor, batch: Optional[Tensor] = None, ptr: Optional[Tensor] = None, batch_size: Optional[int] = None) Tensor [source]
Given a contiguous batch of tensors \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times *}\) (with \(N_i\) indicating the number of elements in example \(i\)), creates a nested PyTorch tensor. Reverse operation of
from_nested_tensor()
.- Parameters:
x (torch.Tensor) – The input tensor \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times *}\).
batch (torch.Tensor, optional) – The batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each element to a specific example. Must be ordered. (default:
None
)ptr (torch.Tensor, optional) – Alternative representation of
batch
in compressed format. (default:None
)batch_size (int, optional) – The batch size \(B\). (default:
None
)
- Return type:
- from_nested_tensor(x: Tensor, return_batch: bool = False) Union[Tensor, Tuple[Tensor, Tensor]] [source]
Given a nested PyTorch tensor, creates a contiguous batch of tensors \(\mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times *}\), and optionally a batch vector which assigns each element to a specific example. Reverse operation of
to_nested_tensor()
.- Parameters:
x (torch.Tensor) – The nested input tensor. The size of nested tensors need to match except for the first dimension.
return_batch (bool, optional) – If set to
True
, will also return the batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\). (default:False
)
- Return type:
- dense_to_sparse(adj: Tensor, mask: Optional[Tensor] = None) Tuple[Tensor, Tensor] [source]
Converts a dense adjacency matrix to a sparse adjacency matrix defined by edge indices and edge attributes.
- Parameters:
adj (torch.Tensor) – The dense adjacency matrix of shape
[num_nodes, num_nodes]
or[batch_size, num_nodes, num_nodes]
.mask (torch.Tensor, optional) – A boolean tensor of shape
[batch_size, num_nodes]
holding information about which nodes are in each example are valid. (default:None
)
- Return type:
(
LongTensor
,Tensor
)
Examples
>>> # For a single adjacency matrix: >>> adj = torch.tensor([[3, 1], ... [2, 0]]) >>> dense_to_sparse(adj) (tensor([[0, 0, 1], [0, 1, 0]]), tensor([3, 1, 2]))
>>> # For two adjacency matrixes: >>> adj = torch.tensor([[[3, 1], ... [2, 0]], ... [[0, 1], ... [0, 2]]]) >>> dense_to_sparse(adj) (tensor([[0, 0, 1, 2, 3], [0, 1, 0, 3, 3]]), tensor([3, 1, 2, 1, 2]))
>>> # First graph with two nodes, second with three: >>> adj = torch.tensor([[ ... [3, 1, 0], ... [2, 0, 0], ... [0, 0, 0] ... ], [ ... [0, 1, 0], ... [0, 2, 3], ... [0, 5, 0] ... ]]) >>> mask = torch.tensor([ ... [True, True, False], ... [True, True, True] ... ]) >>> dense_to_sparse(adj, mask) (tensor([[0, 0, 1, 2, 3, 3, 4], [0, 1, 0, 3, 3, 4, 3]]), tensor([3, 1, 2, 1, 2, 3, 5]))
- is_torch_sparse_tensor(src: Any) bool [source]
Returns
True
if the inputsrc
is atorch.sparse.Tensor
(in any sparse layout).- Parameters:
src (Any) – The input object to be checked.
- Return type:
- is_sparse(src: Any) bool [source]
Returns
True
if the inputsrc
is of typetorch.sparse.Tensor
(in any sparse layout) or of typetorch_sparse.SparseTensor
.- Parameters:
src (Any) – The input object to be checked.
- Return type:
- to_torch_coo_tensor(edge_index: Tensor, edge_attr: Optional[Tensor] = None, size: Optional[Union[int, Tuple[Optional[int], Optional[int]]]] = None, is_coalesced: bool = False) Tensor [source]
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a
torch.sparse.Tensor
with layout torch.sparse_coo. Seeto_edge_index()
for the reverse operation.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – The edge attributes. (default:
None
)size (int or (int, int), optional) – The size of the sparse matrix. If given as an integer, will create a quadratic sparse matrix. If set to
None
, will infer a quadratic sparse matrix based onedge_index.max() + 1
. (default:None
)is_coalesced (bool) – If set to
True
, will assume thatedge_index
is already coalesced and thus avoids expensive computation. (default:False
)
- Return type:
torch.sparse.Tensor
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> to_torch_coo_tensor(edge_index) tensor(indices=tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]), values=tensor([1., 1., 1., 1., 1., 1.]), size=(4, 4), nnz=6, layout=torch.sparse_coo)
- to_torch_csr_tensor(edge_index: Tensor, edge_attr: Optional[Tensor] = None, size: Optional[Union[int, Tuple[Optional[int], Optional[int]]]] = None, is_coalesced: bool = False) Tensor [source]
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a
torch.sparse.Tensor
with layout torch.sparse_csr. Seeto_edge_index()
for the reverse operation.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – The edge attributes. (default:
None
)size (int or (int, int), optional) – The size of the sparse matrix. If given as an integer, will create a quadratic sparse matrix. If set to
None
, will infer a quadratic sparse matrix based onedge_index.max() + 1
. (default:None
)is_coalesced (bool) – If set to
True
, will assume thatedge_index
is already coalesced and thus avoids expensive computation. (default:False
)
- Return type:
torch.sparse.Tensor
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> to_torch_csr_tensor(edge_index) tensor(crow_indices=tensor([0, 1, 3, 5, 6]), col_indices=tensor([1, 0, 2, 1, 3, 2]), values=tensor([1., 1., 1., 1., 1., 1.]), size=(4, 4), nnz=6, layout=torch.sparse_csr)
- to_torch_csc_tensor(edge_index: Tensor, edge_attr: Optional[Tensor] = None, size: Optional[Union[int, Tuple[Optional[int], Optional[int]]]] = None, is_coalesced: bool = False) Tensor [source]
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a
torch.sparse.Tensor
with layout torch.sparse_csc. Seeto_edge_index()
for the reverse operation.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – The edge attributes. (default:
None
)size (int or (int, int), optional) – The size of the sparse matrix. If given as an integer, will create a quadratic sparse matrix. If set to
None
, will infer a quadratic sparse matrix based onedge_index.max() + 1
. (default:None
)is_coalesced (bool) – If set to
True
, will assume thatedge_index
is already coalesced and thus avoids expensive computation. (default:False
)
- Return type:
torch.sparse.Tensor
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> to_torch_csc_tensor(edge_index) tensor(ccol_indices=tensor([0, 1, 3, 5, 6]), row_indices=tensor([1, 0, 2, 1, 3, 2]), values=tensor([1., 1., 1., 1., 1., 1.]), size=(4, 4), nnz=6, layout=torch.sparse_csc)
- to_torch_sparse_tensor(edge_index: Tensor, edge_attr: Optional[Tensor] = None, size: Optional[Union[int, Tuple[Optional[int], Optional[int]]]] = None, is_coalesced: bool = False, layout: layout = torch.sparse_coo) Tensor [source]
Converts a sparse adjacency matrix defined by edge indices and edge attributes to a
torch.sparse.Tensor
with customlayout
. Seeto_edge_index()
for the reverse operation.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor, optional) – The edge attributes. (default:
None
)size (int or (int, int), optional) – The size of the sparse matrix. If given as an integer, will create a quadratic sparse matrix. If set to
None
, will infer a quadratic sparse matrix based onedge_index.max() + 1
. (default:None
)is_coalesced (bool) – If set to
True
, will assume thatedge_index
is already coalesced and thus avoids expensive computation. (default:False
)layout (torch.layout, optional) – The layout of the output sparse tensor (
torch.sparse_coo
,torch.sparse_csr
,torch.sparse_csc
). (default:torch.sparse_coo
)
- Return type:
torch.sparse.Tensor
- to_edge_index(adj: Union[Tensor, SparseTensor]) Tuple[Tensor, Tensor] [source]
Converts a
torch.sparse.Tensor
or atorch_sparse.SparseTensor
to edge indices and edge attributes.- Parameters:
adj (torch.sparse.Tensor or SparseTensor) – The adjacency matrix.
- Return type:
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> adj = to_torch_coo_tensor(edge_index) >>> to_edge_index(adj) (tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]), tensor([1., 1., 1., 1., 1., 1.]))
- spmm(src: Union[Tensor, SparseTensor], other: Tensor, reduce: str = 'sum') Tensor [source]
Matrix product of sparse matrix with dense matrix.
- Parameters:
src (torch.Tensor or torch_sparse.SparseTensor or EdgeIndex) – The input sparse matrix which can be a PyG
torch_sparse.SparseTensor
, a PyTorchtorch.sparse.Tensor
or a PyGEdgeIndex
.other (torch.Tensor) – The input dense matrix.
reduce (str, optional) – The reduce operation to use (
"sum"
,"mean"
,"min"
,"max"
). (default:"sum"
)
- Return type:
Tensor
- unbatch(src: Tensor, batch: Tensor, dim: int = 0, batch_size: Optional[int] = None) List[Tensor] [source]
Splits
src
according to abatch
vector along dimensiondim
.- Parameters:
src (Tensor) – The source tensor.
batch (LongTensor) – The batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each entry in
src
to a specific example. Must be ordered.dim (int, optional) – The dimension along which to split the
src
tensor. (default:0
)batch_size (int, optional) – The batch size. (default:
None
)
- Return type:
List[Tensor]
Example
>>> src = torch.arange(7) >>> batch = torch.tensor([0, 0, 0, 1, 1, 2, 2]) >>> unbatch(src, batch) (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6]))
- unbatch_edge_index(edge_index: Tensor, batch: Tensor, batch_size: Optional[int] = None) List[Tensor] [source]
Splits the
edge_index
according to abatch
vector.- Parameters:
- Return type:
List[Tensor]
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3, 4, 5, 5, 6], ... [1, 0, 2, 1, 3, 2, 5, 4, 6, 5]]) >>> batch = torch.tensor([0, 0, 0, 0, 1, 1, 1]) >>> unbatch_edge_index(edge_index, batch) (tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]), tensor([[0, 1, 1, 2], [1, 0, 2, 1]]))
- one_hot(index: Tensor, num_classes: Optional[int] = None, dtype: Optional[dtype] = None) Tensor [source]
Taskes a one-dimensional
index
tensor and returns a one-hot encoded representation of it with shape[*, num_classes]
that has zeros everywhere except where the index of last dimension matches the corresponding value of the input tensor, in which case it will be1
.Note
This is a more memory-efficient version of
torch.nn.functional.one_hot()
as you can customize the outputdtype
.- Parameters:
index (torch.Tensor) – The one-dimensional input tensor.
num_classes (int, optional) – The total number of classes. If set to
None
, the number of classes will be inferred as one greater than the largest class value in the input tensor. (default:None
)dtype (torch.dtype, optional) – The
dtype
of the output tensor.
- Return type:
- normalized_cut(edge_index: Tensor, edge_attr: Tensor, num_nodes: Optional[int] = None) Tensor [source]
Computes the normalized cut \(\mathbf{e}_{i,j} \cdot \left( \frac{1}{\deg(i)} + \frac{1}{\deg(j)} \right)\) of a weighted graph given by edge indices and edge attributes.
- Parameters:
- Return type:
Tensor
Example
>>> edge_index = torch.tensor([[1, 1, 2, 3], ... [3, 3, 1, 2]]) >>> edge_attr = torch.tensor([1., 1., 1., 1.]) >>> normalized_cut(edge_index, edge_attr) tensor([1.5000, 1.5000, 2.0000, 1.5000])
- grid(height: int, width: int, dtype: Optional[dtype] = None, device: Optional[device] = None) Tuple[Tensor, Tensor] [source]
Returns the edge indices of a two-dimensional grid graph with height
height
and widthwidth
and its node positions.- Parameters:
height (int) – The height of the grid.
width (int) – The width of the grid.
dtype (torch.dtype, optional) – The desired data type of the returned position tensor. (default:
None
)device (torch.device, optional) – The desired device of the returned tensors. (default:
None
)
- Return type:
(
LongTensor
,Tensor
)
Example
>>> (row, col), pos = grid(height=2, width=2) >>> row tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]) >>> col tensor([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]) >>> pos tensor([[0., 1.], [1., 1.], [0., 0.], [1., 0.]])
- geodesic_distance(pos: Tensor, face: Tensor, src: Optional[Tensor] = None, dst: Optional[Tensor] = None, norm: bool = True, max_distance: Optional[float] = None, num_workers: int = 0, **kwargs: Optional[Tensor]) Tensor [source]
Computes (normalized) geodesic distances of a mesh given by
pos
andface
. Ifsrc
anddst
are given, this method only computes the geodesic distances for the respective source and target node-pairs.Note
This function requires the
gdist
package. To install, runpip install cython && pip install gdist
.- Parameters:
pos (torch.Tensor) – The node positions.
face (torch.Tensor) – The face indices.
src (torch.Tensor, optional) – If given, only compute geodesic distances for the specified source indices. (default:
None
)dst (torch.Tensor, optional) – If given, only compute geodesic distances for the specified target indices. (default:
None
)norm (bool, optional) – Normalizes geodesic distances by \(\sqrt{\textrm{area}(\mathcal{M})}\). (default:
True
)max_distance (float, optional) – If given, only yields results for geodesic distances less than
max_distance
. This will speed up runtime dramatically. (default:None
)num_workers (int, optional) – How many subprocesses to use for calculating geodesic distances.
0
means that computation takes place in the main process.-1
means that the available amount of CPU cores is used. (default:0
)
- Return type:
Tensor
Example
>>> pos = torch.tensor([[0.0, 0.0, 0.0], ... [2.0, 0.0, 0.0], ... [0.0, 2.0, 0.0], ... [2.0, 2.0, 0.0]]) >>> face = torch.tensor([[0, 0], ... [1, 2], ... [3, 3]]) >>> geodesic_distance(pos, face) [[0, 1, 1, 1.4142135623730951], [1, 0, 1.4142135623730951, 1], [1, 1.4142135623730951, 0, 1], [1.4142135623730951, 1, 1, 0]]
- to_scipy_sparse_matrix(edge_index: Tensor, edge_attr: Optional[Tensor] = None, num_nodes: Optional[int] = None) Any [source]
Converts a graph given by edge indices and edge attributes to a scipy sparse matrix.
- Parameters:
Examples
>>> edge_index = torch.tensor([ ... [0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2], ... ]) >>> to_scipy_sparse_matrix(edge_index) <4x4 sparse matrix of type '<class 'numpy.float32'>' with 6 stored elements in COOrdinate format>
- Return type:
- from_scipy_sparse_matrix(A: Any) Tuple[Tensor, Tensor] [source]
Converts a scipy sparse matrix to edge indices and edge attributes.
- Parameters:
A (scipy.sparse) – A sparse matrix.
Examples
>>> edge_index = torch.tensor([ ... [0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2], ... ]) >>> adj = to_scipy_sparse_matrix(edge_index) >>> # `edge_index` and `edge_weight` are both returned >>> from_scipy_sparse_matrix(adj) (tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]), tensor([1., 1., 1., 1., 1., 1.]))
- to_networkx(data: Union[Data, HeteroData], node_attrs: Optional[Iterable[str]] = None, edge_attrs: Optional[Iterable[str]] = None, graph_attrs: Optional[Iterable[str]] = None, to_undirected: Optional[Union[bool, str]] = False, to_multi: bool = False, remove_self_loops: bool = False) Any [source]
Converts a
torch_geometric.data.Data
instance to anetworkx.Graph
ifto_undirected
is set toTrue
, or a directednetworkx.DiGraph
otherwise.- Parameters:
data (torch_geometric.data.Data or torch_geometric.data.HeteroData) – A homogeneous or heterogeneous data object.
node_attrs (iterable of str, optional) – The node attributes to be copied. (default:
None
)edge_attrs (iterable of str, optional) – The edge attributes to be copied. (default:
None
)graph_attrs (iterable of str, optional) – The graph attributes to be copied. (default:
None
)to_undirected (bool or str, optional) – If set to
True
, will return anetworkx.Graph
instead of anetworkx.DiGraph
. By default, will include all edges and make them undirected. If set to"upper"
, the undirected graph will only correspond to the upper triangle of the input adjacency matrix. If set to"lower"
, the undirected graph will only correspond to the lower triangle of the input adjacency matrix. Only applicable in case thedata
object holds a homogeneous graph. (default:False
)to_multi (bool, optional) – if set to
True
, will return anetworkx.MultiGraph
or anetworkx:MultiDiGraph
(depending on theto_undirected
option), which will not drop duplicated edges that may exist indata
. (default:False
)remove_self_loops (bool, optional) – If set to
True
, will not include self-loops in the resulting graph. (default:False
)
Examples
>>> edge_index = torch.tensor([ ... [0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2], ... ]) >>> data = Data(edge_index=edge_index, num_nodes=4) >>> to_networkx(data) <networkx.classes.digraph.DiGraph at 0x2713fdb40d0>
- Return type:
- from_networkx(G: Any, group_node_attrs: Optional[Union[List[str], Literal['all']]] = None, group_edge_attrs: Optional[Union[List[str], Literal['all']]] = None) Data [source]
Converts a
networkx.Graph
ornetworkx.DiGraph
to atorch_geometric.data.Data
instance.- Parameters:
G (networkx.Graph or networkx.DiGraph) – A networkx graph.
group_node_attrs (List[str] or "all", optional) – The node attributes to be concatenated and added to
data.x
. (default:None
)group_edge_attrs (List[str] or "all", optional) – The edge attributes to be concatenated and added to
data.edge_attr
. (default:None
)
Note
All
group_node_attrs
andgroup_edge_attrs
values must be numeric.Examples
>>> edge_index = torch.tensor([ ... [0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2], ... ]) >>> data = Data(edge_index=edge_index, num_nodes=4) >>> g = to_networkx(data) >>> # A `Data` object is returned >>> from_networkx(g) Data(edge_index=[2, 6], num_nodes=4)
- Return type:
- to_networkit(edge_index: Tensor, edge_weight: Optional[Tensor] = None, num_nodes: Optional[int] = None, directed: bool = True) Any [source]
Converts a
(edge_index, edge_weight)
tuple to anetworkit.Graph
.- Parameters:
edge_index (torch.Tensor) – The edge indices of the graph.
edge_weight (torch.Tensor, optional) – The edge weights of the graph. (default:
None
)num_nodes (int, optional) – The number of nodes in the graph. (default:
None
)directed (bool, optional) – If set to
False
, the graph will be undirected. (default:True
)
- Return type:
- from_networkit(g: Any) Tuple[Tensor, Optional[Tensor]] [source]
Converts a
networkit.Graph
to a(edge_index, edge_weight)
tuple. If thenetworkit.Graph
is not weighted, the returnededge_weight
will beNone
.
- to_trimesh(data: Data) Any [source]
Converts a
torch_geometric.data.Data
instance to atrimesh.Trimesh
.- Parameters:
data (torch_geometric.data.Data) – The data object.
Example
>>> pos = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]], ... dtype=torch.float) >>> face = torch.tensor([[0, 1, 2], [1, 2, 3]]).t()
>>> data = Data(pos=pos, face=face) >>> to_trimesh(data) <trimesh.Trimesh(vertices.shape=(4, 3), faces.shape=(2, 3))>
- Return type:
- from_trimesh(mesh: Any) Data [source]
Converts a
trimesh.Trimesh
to atorch_geometric.data.Data
instance.- Parameters:
mesh (trimesh.Trimesh) – A
trimesh
mesh.
Example
>>> pos = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]], ... dtype=torch.float) >>> face = torch.tensor([[0, 1, 2], [1, 2, 3]]).t()
>>> data = Data(pos=pos, face=face) >>> mesh = to_trimesh(data) >>> from_trimesh(mesh) Data(pos=[4, 3], face=[3, 2])
- Return type:
- to_cugraph(edge_index: Tensor, edge_weight: Optional[Tensor] = None, relabel_nodes: bool = True, directed: bool = True) Any [source]
Converts a graph given by
edge_index
and optionaledge_weight
into acugraph
graph object.- Parameters:
edge_index (torch.Tensor) – The edge indices of the graph.
edge_weight (torch.Tensor, optional) – The edge weights of the graph. (default:
None
)relabel_nodes (bool, optional) – If set to
True
,cugraph
will remove any isolated nodes, leading to a relabeling of nodes. (default:True
)directed (bool, optional) – If set to
False
, the graph will be undirected. (default:True
)
- Return type:
- from_cugraph(g: Any) Tuple[Tensor, Optional[Tensor]] [source]
Converts a
cugraph
graph object intoedge_index
and optionaledge_weight
tensors.
- to_dgl(data: Union[Data, HeteroData]) Any [source]
Converts a
torch_geometric.data.Data
ortorch_geometric.data.HeteroData
instance to adgl
graph object.- Parameters:
data (torch_geometric.data.Data or torch_geometric.data.HeteroData) – The data object.
Example
>>> edge_index = torch.tensor([[0, 1, 1, 2, 3, 0], [1, 0, 2, 1, 4, 4]]) >>> x = torch.randn(5, 3) >>> edge_attr = torch.randn(6, 2) >>> data = Data(x=x, edge_index=edge_index, edge_attr=y) >>> g = to_dgl(data) >>> g Graph(num_nodes=5, num_edges=6, ndata_schemes={'x': Scheme(shape=(3,))} edata_schemes={'edge_attr': Scheme(shape=(2, ))})
>>> data = HeteroData() >>> data['paper'].x = torch.randn(5, 3) >>> data['author'].x = torch.ones(5, 3) >>> edge_index = torch.tensor([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) >>> data['author', 'cites', 'paper'].edge_index = edge_index >>> g = to_dgl(data) >>> g Graph(num_nodes={'author': 5, 'paper': 5}, num_edges={('author', 'cites', 'paper'): 5}, metagraph=[('author', 'paper', 'cites')])
- Return type:
- from_dgl(g: Any) Union[Data, HeteroData] [source]
Converts a
dgl
graph object to atorch_geometric.data.Data
ortorch_geometric.data.HeteroData
instance.- Parameters:
g (dgl.DGLGraph) – The
dgl
graph object.
Example
>>> g = dgl.graph(([0, 0, 1, 5], [1, 2, 2, 0])) >>> g.ndata['x'] = torch.randn(g.num_nodes(), 3) >>> g.edata['edge_attr'] = torch.randn(g.num_edges(), 2) >>> data = from_dgl(g) >>> data Data(x=[6, 3], edge_attr=[4, 2], edge_index=[2, 4])
>>> g = dgl.heterograph({ >>> g = dgl.heterograph({ ... ('author', 'writes', 'paper'): ([0, 1, 1, 2, 3, 3, 4], ... [0, 0, 1, 1, 1, 2, 2])}) >>> g.nodes['author'].data['x'] = torch.randn(5, 3) >>> g.nodes['paper'].data['x'] = torch.randn(5, 3) >>> data = from_dgl(g) >>> data HeteroData( author={ x=[5, 3] }, paper={ x=[3, 3] }, (author, writes, paper)={ edge_index=[2, 7] } )
- Return type:
- from_rdmol(mol: Any) Data [source]
Converts a
rdkit.Chem.Mol
instance to atorch_geometric.data.Data
instance.- Parameters:
mol (rdkit.Chem.Mol) – The
rdkit
molecule.- Return type:
- to_rdmol(data: Data, kekulize: bool = False) Any [source]
Converts a
torch_geometric.data.Data
instance to ardkit.Chem.Mol
instance.- Parameters:
data (torch_geometric.data.Data) – The molecular graph data.
kekulize (bool, optional) – If set to
True
, converts aromatic bonds to single/double bonds. (default:False
)
- Return type:
- from_smiles(smiles: str, with_hydrogen: bool = False, kekulize: bool = False) Data [source]
Converts a SMILES string to a
torch_geometric.data.Data
instance.
- to_smiles(data: Data, kekulize: bool = False) str [source]
Converts a
torch_geometric.data.Data
instance to a SMILES string.- Parameters:
data (torch_geometric.data.Data) – The molecular graph.
kekulize (bool, optional) – If set to
True
, converts aromatic bonds to single/double bonds. (default:False
)
- Return type:
- erdos_renyi_graph(num_nodes: int, edge_prob: float, directed: bool = False) Tensor [source]
Returns the
edge_index
of a random Erdos-Renyi graph.- Parameters:
Examples
>>> erdos_renyi_graph(5, 0.2, directed=False) tensor([[0, 1, 1, 4], [1, 0, 4, 1]])
>>> erdos_renyi_graph(5, 0.2, directed=True) tensor([[0, 1, 3, 3, 4, 4], [4, 3, 1, 2, 1, 3]])
- Return type:
- stochastic_blockmodel_graph(block_sizes: Union[List[int], Tensor], edge_probs: Union[List[List[float]], Tensor], directed: bool = False) Tensor [source]
Returns the
edge_index
of a stochastic blockmodel graph.- Parameters:
Examples
>>> block_sizes = [2, 2, 4] >>> edge_probs = [[0.25, 0.05, 0.02], ... [0.05, 0.35, 0.07], ... [0.02, 0.07, 0.40]] >>> stochastic_blockmodel_graph(block_sizes, edge_probs, ... directed=False) tensor([[2, 4, 4, 5, 5, 6, 7, 7], [5, 6, 7, 2, 7, 4, 4, 5]])
>>> stochastic_blockmodel_graph(block_sizes, edge_probs, ... directed=True) tensor([[0, 2, 3, 4, 4, 5, 5], [3, 4, 1, 5, 6, 6, 7]])
- Return type:
- barabasi_albert_graph(num_nodes: int, num_edges: int) Tensor [source]
Returns the
edge_index
of a Barabasi-Albert preferential attachment model, where a graph ofnum_nodes
nodes grows by attaching new nodes withnum_edges
edges that are preferentially attached to existing nodes with high degree.- Parameters:
Example
>>> barabasi_albert_graph(num_nodes=4, num_edges=3) tensor([[0, 0, 0, 1, 1, 2, 2, 3], [1, 2, 3, 0, 2, 0, 1, 0]])
- Return type:
- negative_sampling(edge_index: Tensor, num_nodes: Optional[Union[int, Tuple[int, int]]] = None, num_neg_samples: Optional[int] = None, method: str = 'sparse', force_undirected: bool = False) Tensor [source]
Samples random negative edges of a graph given by
edge_index
.- Parameters:
edge_index (LongTensor) – The edge indices.
num_nodes (int or Tuple[int, int], optional) – The number of nodes, i.e.
max_val + 1
ofedge_index
. If given as a tuple, thenedge_index
is interpreted as a bipartite graph with shape(num_src_nodes, num_dst_nodes)
. (default:None
)num_neg_samples (int, optional) – The (approximate) number of negative samples to return. If set to
None
, will try to return a negative edge for every positive edge. (default:None
)method (str, optional) – The method to use for negative sampling, i.e.
"sparse"
or"dense"
. This is a memory/runtime trade-off."sparse"
will work on any graph of any size, while"dense"
can perform faster true-negative checks. (default:"sparse"
)force_undirected (bool, optional) – If set to
True
, sampled negative edges will be undirected. (default:False
)
- Return type:
LongTensor
Examples
>>> # Standard usage >>> edge_index = torch.as_tensor([[0, 0, 1, 2], ... [0, 1, 2, 3]]) >>> negative_sampling(edge_index) tensor([[3, 0, 0, 3], [2, 3, 2, 1]])
>>> # For bipartite graph >>> negative_sampling(edge_index, num_nodes=(3, 4)) tensor([[0, 2, 2, 1], [2, 2, 1, 3]])
- batched_negative_sampling(edge_index: Tensor, batch: Union[Tensor, Tuple[Tensor, Tensor]], num_neg_samples: Optional[int] = None, method: str = 'sparse', force_undirected: bool = False) Tensor [source]
Samples random negative edges of multiple graphs given by
edge_index
andbatch
.- Parameters:
edge_index (LongTensor) – The edge indices.
batch (LongTensor or Tuple[LongTensor, LongTensor]) – Batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each node to a specific example. If given as a tuple, then
edge_index
is interpreted as a bipartite graph connecting two different node types.num_neg_samples (int, optional) – The number of negative samples to return. If set to
None
, will try to return a negative edge for every positive edge. (default:None
)method (str, optional) – The method to use for negative sampling, i.e.
"sparse"
or"dense"
. This is a memory/runtime trade-off."sparse"
will work on any graph of any size, while"dense"
can perform faster true-negative checks. (default:"sparse"
)force_undirected (bool, optional) – If set to
True
, sampled negative edges will be undirected. (default:False
)
- Return type:
LongTensor
Examples
>>> # Standard usage >>> edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]]) >>> edge_index = torch.cat([edge_index, edge_index + 4], dim=1) >>> edge_index tensor([[0, 0, 1, 2, 4, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6, 7]]) >>> batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1]) >>> batched_negative_sampling(edge_index, batch) tensor([[3, 1, 3, 2, 7, 7, 6, 5], [2, 0, 1, 1, 5, 6, 4, 4]])
>>> # For bipartite graph >>> edge_index1 = torch.as_tensor([[0, 0, 1, 1], [0, 1, 2, 3]]) >>> edge_index2 = edge_index1 + torch.tensor([[2], [4]]) >>> edge_index3 = edge_index2 + torch.tensor([[2], [4]]) >>> edge_index = torch.cat([edge_index1, edge_index2, ... edge_index3], dim=1) >>> edge_index tensor([[ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]) >>> src_batch = torch.tensor([0, 0, 1, 1, 2, 2]) >>> dst_batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]) >>> batched_negative_sampling(edge_index, ... (src_batch, dst_batch)) tensor([[ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5], [ 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9]])
- structured_negative_sampling(edge_index: Tensor, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True) Tuple[Tensor, Tensor, Tensor] [source]
Samples a negative edge
(i,k)
for every positive edge(i,j)
in the graph given byedge_index
, and returns it as a tuple of the form(i,j,k)
.- Parameters:
- Return type:
(LongTensor, LongTensor, LongTensor)
Example
>>> edge_index = torch.as_tensor([[0, 0, 1, 2], ... [0, 1, 2, 3]]) >>> structured_negative_sampling(edge_index) (tensor([0, 0, 1, 2]), tensor([0, 1, 2, 3]), tensor([2, 3, 0, 2]))
- structured_negative_sampling_feasible(edge_index: Tensor, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True) bool [source]
Returns
True
ifstructured_negative_sampling()
is feasible on the graph given byedge_index
.structured_negative_sampling()
is infeasible if at least one node is connected to all other nodes.- Parameters:
- Return type:
Examples
>>> edge_index = torch.LongTensor([[0, 0, 1, 1, 2, 2, 2], ... [1, 2, 0, 2, 0, 1, 1]]) >>> structured_negative_sampling_feasible(edge_index, 3, False) False
>>> structured_negative_sampling_feasible(edge_index, 3, True) True
- shuffle_node(x: Tensor, batch: Optional[Tensor] = None, training: bool = True) Tuple[Tensor, Tensor] [source]
Randomly shuffle the feature matrix
x
along the first dimension.The method returns (1) the shuffled
x
, (2) the permutation indicating the orders of original nodes after shuffling.- Parameters:
- Return type:
(
FloatTensor
,LongTensor
)
Example
>>> # Standard case >>> x = torch.tensor([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8], ... [9, 10, 11]], dtype=torch.float) >>> x, node_perm = shuffle_node(x) >>> x tensor([[ 3., 4., 5.], [ 9., 10., 11.], [ 0., 1., 2.], [ 6., 7., 8.]]) >>> node_perm tensor([1, 3, 0, 2])
>>> # For batched graphs as inputs >>> batch = torch.tensor([0, 0, 1, 1]) >>> x, node_perm = shuffle_node(x, batch) >>> x tensor([[ 3., 4., 5.], [ 0., 1., 2.], [ 9., 10., 11.], [ 6., 7., 8.]]) >>> node_perm tensor([1, 0, 3, 2])
- mask_feature(x: Tensor, p: float = 0.5, mode: str = 'col', fill_value: float = 0.0, training: bool = True) Tuple[Tensor, Tensor] [source]
Randomly masks feature from the feature matrix
x
with probabilityp
using samples from a Bernoulli distribution.The method returns (1) the retained
x
, (2) the feature mask broadcastable withx
(mode='row'
andmode='col'
) or with the same shape asx
(mode='all'
), indicating where features are retained.- Parameters:
x (FloatTensor) – The feature matrix.
p (float, optional) – The masking ratio. (default:
0.5
)mode (str, optional) – The masked scheme to use for feature masking. (
"row"
,"col"
or"all"
). Ifmode='col'
, will mask entire features of all nodes from the feature matrix. Ifmode='row'
, will mask entire nodes from the feature matrix. Ifmode='all'
, will mask individual features across all nodes. (default:'col'
)fill_value (float, optional) – The value for masked features in the output tensor. (default:
0
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)
- Return type:
(
FloatTensor
,BoolTensor
)
Examples
>>> # Masked features are column-wise sampled >>> x = torch.tensor([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9]], dtype=torch.float) >>> x, feat_mask = mask_feature(x) >>> x tensor([[1., 0., 3.], [4., 0., 6.], [7., 0., 9.]]), >>> feat_mask tensor([[True, False, True]])
>>> # Masked features are row-wise sampled >>> x, feat_mask = mask_feature(x, mode='row') >>> x tensor([[1., 2., 3.], [0., 0., 0.], [7., 8., 9.]]), >>> feat_mask tensor([[True], [False], [True]])
>>> # Masked features are uniformly sampled >>> x, feat_mask = mask_feature(x, mode='all') >>> x tensor([[0., 0., 0.], [4., 0., 6.], [0., 0., 9.]]) >>> feat_mask tensor([[False, False, False], [True, False, True], [False, False, True]])
- add_random_edge(edge_index: Tensor, p: float = 0.5, force_undirected: bool = False, num_nodes: Optional[Union[int, Tuple[int, int]]] = None, training: bool = True) Tuple[Tensor, Tensor] [source]
Randomly adds edges to
edge_index
.The method returns (1) the retained
edge_index
, (2) the added edge indices.- Parameters:
edge_index (LongTensor) – The edge indices.
p (float) – Ratio of added edges to the existing edges. (default:
0.5
)force_undirected (bool, optional) – If set to
True
, added edges will be undirected. (default:False
)num_nodes (int, Tuple[int], optional) – The overall number of nodes, i.e.
max_val + 1
, or the number of source and destination nodes, i.e.(max_src_val + 1, max_dst_val + 1)
ofedge_index
. (default:None
)training (bool, optional) – If set to
False
, this operation is a no-op. (default:True
)
- Return type:
(
LongTensor
,LongTensor
)
Examples
>>> # Standard case >>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3], [1, 0, 2, 1, 3, 2, 0, 2, 1]]) >>> added_edges tensor([[2, 1, 3], [0, 2, 1]])
>>> # The returned graph is kept undirected >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... force_undirected=True) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3, 0, 2, 1], [1, 0, 2, 1, 3, 2, 0, 2, 1, 2, 1, 3]]) >>> added_edges tensor([[2, 1, 3, 0, 2, 1], [0, 2, 1, 2, 1, 3]])
>>> # For bipartite graphs >>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 3, 1, 4, 2, 1]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... num_nodes=(6, 5)) >>> edge_index tensor([[0, 1, 2, 3, 4, 5, 3, 4, 1], [2, 3, 1, 4, 2, 1, 1, 3, 2]]) >>> added_edges tensor([[3, 4, 1], [1, 3, 2]])
- tree_decomposition(mol: Any, return_vocab: bool = False) Union[Tuple[Tensor, Tensor, int], Tuple[Tensor, Tensor, int, Tensor]] [source]
The tree decomposition algorithm of molecules from the “Junction Tree Variational Autoencoder for Molecular Graph Generation” paper. Returns the graph connectivity of the junction tree, the assignment mapping of each atom to the clique in the junction tree, and the number of cliques.
- Parameters:
- Return type:
(LongTensor, LongTensor, int)
ifreturn_vocab
isFalse
, else(LongTensor, LongTensor, int, LongTensor)
- get_embeddings(model: Module, *args: Any, **kwargs: Any) List[Tensor] [source]
Returns the output embeddings of all
MessagePassing
layers inmodel
.Internally, this method registers forward hooks on all
MessagePassing
layers of amodel
, and runs the forward pass of themodel
by callingmodel(*args, **kwargs)
.- Parameters:
model (torch.nn.Module) – The message passing model.
*args – Arguments passed to the model.
**kwargs (optional) – Additional keyword arguments passed to the model.
- Return type:
- trim_to_layer(layer: int, num_sampled_nodes_per_hop: Union[List[int], Dict[str, List[int]]], num_sampled_edges_per_hop: Union[List[int], Dict[Tuple[str, str, str], List[int]]], x: Union[Tensor, Dict[str, Tensor]], edge_index: Union[Tensor, Dict[Tuple[str, str, str], Tensor]], edge_attr: Optional[Union[Tensor, Dict[Tuple[str, str, str], Tensor]]] = None) Tuple[Union[Tensor, Dict[str, Tensor]], Union[Tensor, Dict[Tuple[str, str, str], Union[Tensor, SparseTensor]]], Optional[Union[Tensor, Dict[Tuple[str, str, str], Tensor]]]] [source]
Trims the
edge_index
representation, node featuresx
and edge featuresedge_attr
to a minimal-sized representation for the current GNN layerlayer
in directedNeighborLoader
scenarios.This ensures that no computation is performed for nodes and edges that are not included in the current GNN layer, thus avoiding unnecessary computation within the GNN when performing neighborhood sampling.
- Parameters:
layer (int) – The current GNN layer.
num_sampled_nodes_per_hop (List[int] or Dict[NodeType, List[int]]) – The number of sampled nodes per hop.
num_sampled_edges_per_hop (List[int] or Dict[EdgeType, List[int]]) – The number of sampled edges per hop.
x (torch.Tensor or Dict[NodeType, torch.Tensor]) – The homogeneous or heterogeneous (hidden) node features.
edge_index (torch.Tensor or Dict[EdgeType, torch.Tensor]) – The homogeneous or heterogeneous edge indices.
edge_attr (torch.Tensor or Dict[EdgeType, torch.Tensor], optional) – The homogeneous or heterogeneous (hidden) edge features.
- Return type:
Tuple
[Union
[Tensor
,Dict
[str
,Tensor
]],Union
[Tensor
,Dict
[Tuple
[str
,str
,str
],Union
[Tensor
,SparseTensor
]]],Union
[Tensor
,Dict
[Tuple
[str
,str
,str
],Tensor
],None
]]
- get_ppr(edge_index: Tensor, alpha: float = 0.2, eps: float = 1e-05, target: Optional[Tensor] = None, num_nodes: Optional[int] = None) Tuple[Tensor, Tensor] [source]
Calculates the personalized PageRank (PPR) vector for all or a subset of nodes using a variant of the Andersen algorithm.
- Parameters:
edge_index (torch.Tensor) – The indices of the graph.
alpha (float, optional) – The alpha value of the PageRank algorithm. (default:
0.2
)eps (float, optional) – The threshold for stopping the PPR calculation (
edge_weight >= eps * out_degree
). (default:1e-5
)target (torch.Tensor, optional) – The target nodes to compute PPR for. If not given, calculates PPR vectors for all nodes. (default:
None
)num_nodes (int, optional) – The number of nodes. (default:
None
)
- Return type:
- train_test_split_edges(data: Data, val_ratio: float = 0.05, test_ratio: float = 0.1) Data [source]
Splits the edges of a
torch_geometric.data.Data
object into positive and negative train/val/test edges. As such, it will replace theedge_index
attribute withtrain_pos_edge_index
,train_pos_neg_adj_mask
,val_pos_edge_index
,val_neg_edge_index
andtest_pos_edge_index
attributes. Ifdata
has edge features namededge_attr
, thentrain_pos_edge_attr
,val_pos_edge_attr
andtest_pos_edge_attr
will be added as well.Warning
train_test_split_edges()
is deprecated and will be removed in a future release. Usetorch_geometric.transforms.RandomLinkSplit
instead.- Parameters:
- Return type: