import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Linear
from torch_geometric.typing import OptTensor
[docs]class DenseSAGEConv(torch.nn.Module):
r"""See :class:`torch_geometric.nn.conv.SAGEConv`.
.. note::
:class:`~torch_geometric.nn.dense.DenseSAGEConv` expects to work on
binary adjacency matrices.
If you want to make use of weighted dense adjacency matrices, please
use :class:`torch_geometric.nn.dense.DenseGraphConv` instead.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
normalize: bool = False,
bias: bool = True,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.lin_rel = Linear(in_channels, out_channels, bias=False)
self.lin_root = Linear(in_channels, out_channels, bias=bias)
self.reset_parameters()
[docs] def reset_parameters(self):
r"""Resets all learnable parameters of the module."""
self.lin_rel.reset_parameters()
self.lin_root.reset_parameters()
[docs] def forward(self, x: Tensor, adj: Tensor,
mask: OptTensor = None) -> Tensor:
r"""Forward pass.
Args:
x (torch.Tensor): Node feature tensor
:math:`\mathbf{X} \in \mathbb{R}^{B \times N \times F}`, with
batch-size :math:`B`, (maximum) number of nodes :math:`N` for
each graph, and feature dimension :math:`F`.
adj (torch.Tensor): Adjacency tensor
:math:`\mathbf{A} \in \mathbb{R}^{B \times N \times N}`.
The adjacency tensor is broadcastable in the batch dimension,
resulting in a shared adjacency matrix for the complete batch.
mask (torch.Tensor, optional): Mask matrix
:math:`\mathbf{M} \in {\{ 0, 1 \}}^{B \times N}` indicating
the valid nodes for each graph. (default: :obj:`None`)
"""
x = x.unsqueeze(0) if x.dim() == 2 else x
adj = adj.unsqueeze(0) if adj.dim() == 2 else adj
B, N, _ = adj.size()
out = torch.matmul(adj, x)
out = out / adj.sum(dim=-1, keepdim=True).clamp(min=1)
out = self.lin_rel(out) + self.lin_root(x)
if self.normalize:
out = F.normalize(out, p=2.0, dim=-1)
if mask is not None:
out = out * mask.view(B, N, 1).to(x.dtype)
return out
def __repr__(self) -> str:
return (f'{self.__class__.__name__}({self.in_channels}, '
f'{self.out_channels})')