Source code for torch_geometric.nn.kge.complex

import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Embedding

from torch_geometric.nn.kge import KGEModel


[docs]class ComplEx(KGEModel): r"""The ComplEx model from the `"Complex Embeddings for Simple Link Prediction" <https://arxiv.org/abs/1606.06357>`_ paper. :class:`ComplEx` models relations as complex-valued bilinear mappings between head and tail entities using the Hermetian dot product. The entities and relations are embedded in different dimensional spaces, resulting in the scoring function: .. math:: d(h, r, t) = Re(< \mathbf{e}_h, \mathbf{e}_r, \mathbf{e}_t>) .. note:: For an example of using the :class:`ComplEx` model, see `examples/kge_fb15k_237.py <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ kge_fb15k_237.py>`_. Args: num_nodes (int): The number of nodes/entities in the graph. num_relations (int): The number of relations in the graph. hidden_channels (int): The hidden embedding size. sparse (bool, optional): If set to :obj:`True`, gradients w.r.t. to the embedding matrices will be sparse. (default: :obj:`False`) """ def __init__( self, num_nodes: int, num_relations: int, hidden_channels: int, sparse: bool = False, ): super().__init__(num_nodes, num_relations, hidden_channels, sparse) self.node_emb_im = Embedding(num_nodes, hidden_channels, sparse=sparse) self.rel_emb_im = Embedding(num_relations, hidden_channels, sparse=sparse) self.reset_parameters()
[docs] def reset_parameters(self): torch.nn.init.xavier_uniform_(self.node_emb.weight) torch.nn.init.xavier_uniform_(self.node_emb_im.weight) torch.nn.init.xavier_uniform_(self.rel_emb.weight) torch.nn.init.xavier_uniform_(self.rel_emb_im.weight)
[docs] def forward( self, head_index: Tensor, rel_type: Tensor, tail_index: Tensor, ) -> Tensor: head_re = self.node_emb(head_index) head_im = self.node_emb_im(head_index) rel_re = self.rel_emb(rel_type) rel_im = self.rel_emb_im(rel_type) tail_re = self.node_emb(tail_index) tail_im = self.node_emb_im(tail_index) return (triple_dot(head_re, rel_re, tail_re) + triple_dot(head_im, rel_re, tail_im) + triple_dot(head_re, rel_im, tail_im) - triple_dot(head_im, rel_im, tail_re))
[docs] def loss( self, head_index: Tensor, rel_type: Tensor, tail_index: Tensor, ) -> Tensor: pos_score = self(head_index, rel_type, tail_index) neg_score = self(*self.random_sample(head_index, rel_type, tail_index)) scores = torch.cat([pos_score, neg_score], dim=0) pos_target = torch.ones_like(pos_score) neg_target = torch.zeros_like(neg_score) target = torch.cat([pos_target, neg_target], dim=0) return F.binary_cross_entropy_with_logits(scores, target)
def triple_dot(x: Tensor, y: Tensor, z: Tensor) -> Tensor: return (x * y * z).sum(dim=-1)