import torch
import torch.nn.functional as F
from torch import Tensor
from torch_geometric.nn.kge import KGEModel
[docs]class DistMult(KGEModel):
r"""The DistMult model from the `"Embedding Entities and Relations for
Learning and Inference in Knowledge Bases"
<https://arxiv.org/abs/1412.6575>`_ paper.
:class:`DistMult` models relations as diagonal matrices, which simplifies
the bi-linear interaction between the head and tail entities to the score
function:
.. math::
d(h, r, t) = < \mathbf{e}_h, \mathbf{e}_r, \mathbf{e}_t >
.. note::
For an example of using the :class:`DistMult` model, see
`examples/kge_fb15k_237.py
<https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
kge_fb15k_237.py>`_.
Args:
num_nodes (int): The number of nodes/entities in the graph.
num_relations (int): The number of relations in the graph.
hidden_channels (int): The hidden embedding size.
margin (float, optional): The margin of the ranking loss.
(default: :obj:`1.0`)
sparse (bool, optional): If set to :obj:`True`, gradients w.r.t. to
the embedding matrices will be sparse. (default: :obj:`False`)
"""
def __init__(
self,
num_nodes: int,
num_relations: int,
hidden_channels: int,
margin: float = 1.0,
sparse: bool = False,
):
super().__init__(num_nodes, num_relations, hidden_channels, sparse)
self.margin = margin
self.reset_parameters()
[docs] def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.node_emb.weight)
torch.nn.init.xavier_uniform_(self.rel_emb.weight)
[docs] def forward(
self,
head_index: Tensor,
rel_type: Tensor,
tail_index: Tensor,
) -> Tensor:
head = self.node_emb(head_index)
rel = self.rel_emb(rel_type)
tail = self.node_emb(tail_index)
return (head * rel * tail).sum(dim=-1)
[docs] def loss(
self,
head_index: Tensor,
rel_type: Tensor,
tail_index: Tensor,
) -> Tensor:
pos_score = self(head_index, rel_type, tail_index)
neg_score = self(*self.random_sample(head_index, rel_type, tail_index))
return F.margin_ranking_loss(
pos_score,
neg_score,
target=torch.ones_like(pos_score),
margin=self.margin,
)