Source code for torch_geometric.nn.models.meta

from typing import Optional, Tuple

import torch
from torch import Tensor


[docs]class MetaLayer(torch.nn.Module): r"""A meta layer for building any kind of graph network, inspired by the `"Relational Inductive Biases, Deep Learning, and Graph Networks" <https://arxiv.org/abs/1806.01261>`_ paper. A graph network takes a graph as input and returns an updated graph as output (with same connectivity). The input graph has node features :obj:`x`, edge features :obj:`edge_attr` as well as graph-level features :obj:`u`. The output graph has the same structure, but updated features. Edge features, node features as well as global features are updated by calling the modules :obj:`edge_model`, :obj:`node_model` and :obj:`global_model`, respectively. To allow for batch-wise graph processing, all callable functions take an additional argument :obj:`batch`, which determines the assignment of edges or nodes to their specific graphs. Args: edge_model (torch.nn.Module, optional): A callable which updates a graph's edge features based on its source and target node features, its current edge features and its global features. (default: :obj:`None`) node_model (torch.nn.Module, optional): A callable which updates a graph's node features based on its current node features, its graph connectivity, its edge features and its global features. (default: :obj:`None`) global_model (torch.nn.Module, optional): A callable which updates a graph's global features based on its node features, its graph connectivity, its edge features and its current global features. (default: :obj:`None`) .. code-block:: python from torch.nn import Sequential as Seq, Linear as Lin, ReLU from torch_geometric.utils import scatter from torch_geometric.nn import MetaLayer class EdgeModel(torch.nn.Module): def __init__(self): super().__init__() self.edge_mlp = Seq(Lin(..., ...), ReLU(), Lin(..., ...)) def forward(self, src, dst, edge_attr, u, batch): # src, dst: [E, F_x], where E is the number of edges. # edge_attr: [E, F_e] # u: [B, F_u], where B is the number of graphs. # batch: [E] with max entry B - 1. out = torch.cat([src, dst, edge_attr, u[batch]], 1) return self.edge_mlp(out) class NodeModel(torch.nn.Module): def __init__(self): super().__init__() self.node_mlp_1 = Seq(Lin(..., ...), ReLU(), Lin(..., ...)) self.node_mlp_2 = Seq(Lin(..., ...), ReLU(), Lin(..., ...)) def forward(self, x, edge_index, edge_attr, u, batch): # x: [N, F_x], where N is the number of nodes. # edge_index: [2, E] with max entry N - 1. # edge_attr: [E, F_e] # u: [B, F_u] # batch: [N] with max entry B - 1. row, col = edge_index out = torch.cat([x[row], edge_attr], dim=1) out = self.node_mlp_1(out) out = scatter(out, col, dim=0, dim_size=x.size(0), reduce='mean') out = torch.cat([x, out, u[batch]], dim=1) return self.node_mlp_2(out) class GlobalModel(torch.nn.Module): def __init__(self): super().__init__() self.global_mlp = Seq(Lin(..., ...), ReLU(), Lin(..., ...)) def forward(self, x, edge_index, edge_attr, u, batch): # x: [N, F_x], where N is the number of nodes. # edge_index: [2, E] with max entry N - 1. # edge_attr: [E, F_e] # u: [B, F_u] # batch: [N] with max entry B - 1. out = torch.cat([ u, scatter(x, batch, dim=0, reduce='mean'), ], dim=1) return self.global_mlp(out) op = MetaLayer(EdgeModel(), NodeModel(), GlobalModel()) x, edge_attr, u = op(x, edge_index, edge_attr, u, batch) """ def __init__( self, edge_model: Optional[torch.nn.Module] = None, node_model: Optional[torch.nn.Module] = None, global_model: Optional[torch.nn.Module] = None, ): super().__init__() self.edge_model = edge_model self.node_model = node_model self.global_model = global_model self.reset_parameters()
[docs] def reset_parameters(self): r"""Resets all learnable parameters of the module.""" for item in [self.node_model, self.edge_model, self.global_model]: if hasattr(item, 'reset_parameters'): item.reset_parameters()
[docs] def forward( self, x: Tensor, edge_index: Tensor, edge_attr: Optional[Tensor] = None, u: Optional[Tensor] = None, batch: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: r"""Forward pass. Args: x (torch.Tensor): The node features. edge_index (torch.Tensor): The edge indices. edge_attr (torch.Tensor, optional): The edge features. (default: :obj:`None`) u (torch.Tensor, optional): The global graph features. (default: :obj:`None`) batch (torch.Tensor, optional): The batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific graph. (default: :obj:`None`) """ row = edge_index[0] col = edge_index[1] if self.edge_model is not None: edge_attr = self.edge_model(x[row], x[col], edge_attr, u, batch if batch is None else batch[row]) if self.node_model is not None: x = self.node_model(x, edge_index, edge_attr, u, batch) if self.global_model is not None: u = self.global_model(x, edge_index, edge_attr, u, batch) return x, edge_attr, u
def __repr__(self) -> str: return (f'{self.__class__.__name__}(\n' f' edge_model={self.edge_model},\n' f' node_model={self.node_model},\n' f' global_model={self.global_model}\n' f')')