Source code for torch_geometric.nn.pool.approx_knn

import torch
from torch import Tensor


[docs]def approx_knn( x: Tensor, y: Tensor, k: int, batch_x: Tensor = None, batch_y: Tensor = None, ) -> Tensor: # pragma: no cover r"""Finds for each element in :obj:`y` the :obj:`k` approximated nearest points in :obj:`x`. .. note:: Approximated :math:`k`-nearest neighbor search is performed via the `pynndescent <https://pynndescent.readthedocs.io/en/latest>`_ library. Args: x (torch.Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. y (torch.Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`. k (int): The number of neighbors. batch_x (torch.Tensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) batch_y (torch.Tensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each node to a specific example. (default: :obj:`None`) :rtype: :class:`torch.Tensor` """ from pynndescent import NNDescent if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) min_xy = min(x.min(), y.min()) x, y = x - min_xy, y - min_xy max_xy = max(x.max(), y.max()) x, y, = x / max_xy, y / max_xy # Concat batch/features to ensure no cross-links between examples exist: x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], dim=-1) y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], dim=-1) index = NNDescent(x.detach().cpu().numpy()) col, dist = index.query(y.detach().cpu().numpy(), k=k) dist = torch.from_numpy(dist).view(-1).to(x.device, x.dtype) col = torch.from_numpy(col).view(-1).to(x.device, torch.long) row = torch.arange(y.size(0), device=x.device, dtype=torch.long) row = row.repeat_interleave(k) mask = ~torch.isinf(dist) row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)
[docs]def approx_knn_graph( x: Tensor, k: int, batch: Tensor = None, loop: bool = False, flow: str = 'source_to_target', ) -> Tensor: # pragma: no cover r"""Computes graph edges to the nearest approximated :obj:`k` points. .. note:: Approximated :math:`k`-nearest neighbor search is performed via the `pynndescent <https://pynndescent.readthedocs.io/en/latest>`_ library. Args: x (torch.Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. k (int): The number of neighbors. batch (torch.Tensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) loop (bool, optional): If :obj:`True`, the graph will contain self-loops. (default: :obj:`False`) flow (str, optional): The flow direction when using in combination with message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) :rtype: :class:`torch.Tensor` """ assert flow in ['source_to_target', 'target_to_source'] row, col = approx_knn(x, x, k if loop else k + 1, batch, batch) row, col = (col, row) if flow == 'source_to_target' else (row, col) if not loop: mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)