Source code for torch_geometric.nn.pool.asap

import torch
import torch.nn.functional as F
from torch.nn import Linear
from torch_scatter import scatter
from torch_sparse import SparseTensor

from torch_geometric.nn import LEConv
from torch_geometric.utils import softmax
from torch_geometric.nn.pool.topk_pool import topk
from torch_geometric.utils import add_remaining_self_loops

[docs]class ASAPooling(torch.nn.Module): r"""The Adaptive Structure Aware Pooling operator from the `"ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations" <>`_ paper. Args: in_channels (int): Size of each input sample. ratio (float, optional): Graph pooling ratio, which is used to compute :math:`k = \lceil \mathrm{ratio} \cdot N \rceil`. (default: :obj:`0.5`) GNN (torch.nn.Module, optional): A graph neural network layer for using intra-cluster properties. Especially helpful for graphs with higher degree of neighborhood (one of :class:`torch_geometric.nn.conv.GraphConv`, :class:`torch_geometric.nn.conv.GCNConv` or any GNN which supports the :obj:`edge_weight` parameter). (default: :obj:`None`) dropout (float, optional): Dropout probability of the normalized attention coefficients which exposes each node to a stochastically sampled neighborhood during training. (default: :obj:`0`) negative_slope (float, optional): LeakyReLU angle of the negative slope. (default: :obj:`0.2`) add_self_loops (bool, optional): If set to :obj:`True`, will add self loops to the new graph connectivity. (default: :obj:`False`) **kwargs (optional): Additional parameters for initializing the graph neural network layer. """ def __init__(self, in_channels, ratio=0.5, GNN=None, dropout=0, negative_slope=0.2, add_self_loops=False, **kwargs): super(ASAPooling, self).__init__() self.in_channels = in_channels self.ratio = ratio self.negative_slope = negative_slope self.dropout = dropout self.GNN = GNN self.add_self_loops = add_self_loops self.lin = Linear(in_channels, in_channels) self.att = Linear(2 * in_channels, 1) self.gnn_score = LEConv(self.in_channels, 1) if self.GNN is not None: self.gnn_intra_cluster = GNN(self.in_channels, self.in_channels, **kwargs) self.reset_parameters()
[docs] def reset_parameters(self): self.lin.reset_parameters() self.att.reset_parameters() self.gnn_score.reset_parameters() if self.GNN is not None: self.gnn_intra_cluster.reset_parameters()
[docs] def forward(self, x, edge_index, edge_weight=None, batch=None): N = x.size(0) edge_index, edge_weight = add_remaining_self_loops( edge_index, edge_weight, fill_value=1, num_nodes=N) if batch is None: batch = edge_index.new_zeros(x.size(0)) x = x.unsqueeze(-1) if x.dim() == 1 else x x_pool = x if self.GNN is not None: x_pool = self.gnn_intra_cluster(x=x, edge_index=edge_index, edge_weight=edge_weight) x_pool_j = x_pool[edge_index[0]] x_q = scatter(x_pool_j, edge_index[1], dim=0, reduce='max') x_q = self.lin(x_q)[edge_index[1]] score = self.att([x_q, x_pool_j], dim=-1)).view(-1) score = F.leaky_relu(score, self.negative_slope) score = softmax(score, edge_index[1], num_nodes=N) # Sample attention coefficients stochastically. score = F.dropout(score, p=self.dropout, v_j = x[edge_index[0]] * score.view(-1, 1) x = scatter(v_j, edge_index[1], dim=0, reduce='add') # Cluster selection. fitness = self.gnn_score(x, edge_index).sigmoid().view(-1) perm = topk(fitness, self.ratio, batch) x = x[perm] * fitness[perm].view(-1, 1) batch = batch[perm] # Graph coarsening. row, col = edge_index A = SparseTensor(row=row, col=col, value=edge_weight, sparse_sizes=(N, N)) S = SparseTensor(row=row, col=col, value=score, sparse_sizes=(N, N)) S = S[:, perm] A = S.t() @ A @ S if self.add_self_loops: A = A.fill_diag(1.) else: A = A.remove_diag() row, col, edge_weight = A.coo() edge_index = torch.stack([row, col], dim=0) return x, edge_index, edge_weight, batch, perm
def __repr__(self): return '{}({}, ratio={})'.format(self.__class__.__name__, self.in_channels, self.ratio)