from typing import Optional
import torch
from torch_geometric.data import Data
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.transforms import BaseTransform
from torch_geometric.utils import degree
[docs]@functional_transform('target_indegree')
class TargetIndegree(BaseTransform):
r"""Saves the globally normalized degree of target nodes
(functional name: :obj:`target_indegree`)
.. math::
\mathbf{u}(i,j) = \frac{\deg(j)}{\max_{v \in \mathcal{V}} \deg(v)}
in its edge attributes.
Args:
cat (bool, optional): Concat pseudo-coordinates to edge attributes
instead of replacing them. (default: :obj:`True`)
"""
def __init__(
self,
norm: bool = True,
max_value: Optional[float] = None,
cat: bool = True,
):
self.norm = norm
self.max = max_value
self.cat = cat
def forward(self, data: Data) -> Data:
col, pseudo = data.edge_index[1], data.edge_attr
deg = degree(col, data.num_nodes)
if self.norm:
deg = deg / (deg.max() if self.max is None else self.max)
deg = deg[col]
deg = deg.view(-1, 1)
if pseudo is not None and self.cat:
pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo
data.edge_attr = torch.cat([pseudo, deg.type_as(pseudo)], dim=-1)
else:
data.edge_attr = deg
return data
def __repr__(self) -> str:
return (f'{self.__class__.__name__}(norm={self.norm}, '
f'max_value={self.max})')