torch_geometric.nn.conv.EdgeConv
- class EdgeConv(nn: Callable, aggr: str = 'max', **kwargs)[source]
Bases:
MessagePassing
The edge convolutional operator from the “Dynamic Graph CNN for Learning on Point Clouds” paper.
\[\mathbf{x}^{\prime}_i = \sum_{j \in \mathcal{N}(i)} h_{\mathbf{\Theta}}(\mathbf{x}_i \, \Vert \, \mathbf{x}_j - \mathbf{x}_i),\]where \(h_{\mathbf{\Theta}}\) denotes a neural network, .i.e. a MLP.
- Parameters:
nn (torch.nn.Module) – A neural network \(h_{\mathbf{\Theta}}\) that maps pair-wise concatenated node features
x
of shape[-1, 2 * in_channels]
to shape[-1, out_channels]
, e.g., defined bytorch.nn.Sequential
.aggr (str, optional) – The aggregation scheme to use (
"add"
,"mean"
,"max"
). (default:"max"
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- Shapes:
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V}|, F_{in}), (|\mathcal{V}|, F_{in}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite