torch_geometric.nn.kge.RotatE
- class RotatE(num_nodes: int, num_relations: int, hidden_channels: int, margin: float = 1.0, sparse: bool = False)[source]
Bases:
KGEModel
The RotatE model from the “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space” paper.
RotatE
models relations as a rotation in complex space from head to tail such that\[\mathbf{e}_t = \mathbf{e}_h \circ \mathbf{e}_r,\]resulting in the scoring function
\[d(h, r, t) = - {\| \mathbf{e}_h \circ \mathbf{e}_r - \mathbf{e}_t \|}_p\]Note
For an example of using the
RotatE
model, see examples/kge_fb15k_237.py.- Parameters:
num_nodes (int) – The number of nodes/entities in the graph.
num_relations (int) – The number of relations in the graph.
hidden_channels (int) – The hidden embedding size.
margin (float, optional) – The margin of the ranking loss.
sparse (bool, optional) – If set to
True
, gradients w.r.t. to the embedding matrices will be sparse. (default:False
)
- forward(head_index: Tensor, rel_type: Tensor, tail_index: Tensor) Tensor [source]
Returns the score for the given triplet.
- Parameters:
head_index (torch.Tensor) – The head indices.
rel_type (torch.Tensor) – The relation type.
tail_index (torch.Tensor) – The tail indices.
- Return type:
- loss(head_index: Tensor, rel_type: Tensor, tail_index: Tensor) Tensor [source]
Returns the loss value for the given triplet.
- Parameters:
head_index (torch.Tensor) – The head indices.
rel_type (torch.Tensor) – The relation type.
tail_index (torch.Tensor) – The tail indices.
- Return type: